算法——托普利茨矩阵
作者:互联网
托普利茨矩阵
# ToeplitzMatrix 托普利茨矩阵 class Solution: def is_toeplitz_matrix(self, matrix): for i in range(len(matrix[0])): for v in range(1, len(matrix)): try: if matrix[0][i] != matrix[v][i+v]: return False except: break for i in range(1, len(matrix)): count = 1 for v in range(i+1, len(matrix)): try: if matrix[i][0] != matrix[v][count]: return False count += 1 except: break return True def is_toeplitz_matrix_easy(self, matrix): # 更简单的做法 n = len(matrix) # rows m = len(matrix[0]) # cols for r in range(1, n): if matrix[r][1:] != matrix[r-1][:m-1]: return False return True if __name__ == '__main__': matrix1 = [ [1, 2, 3, 4], [5, 1, 2, 3], [9, 5, 1, 2] ] matrix2 = [ [1, 2], [2, 2] ] matrix3 = [ [41, 45], [81, 41], [73, 81], [47, 73], [0, 47], [79, 76] ] print(Solution().is_toeplitz_matrix(matrix1)) print(Solution().is_toeplitz_matrix(matrix2)) print(Solution().is_toeplitz_matrix(matrix3)) print(Solution().is_toeplitz_matrix_easy(matrix1)) print(Solution().is_toeplitz_matrix_easy(matrix2)) print(Solution().is_toeplitz_matrix_easy(matrix3))
标签:托普,matrix,矩阵,Solution,len,利茨,print,return,toeplitz 来源: https://www.cnblogs.com/noonjuan/p/11119820.html