编程语言
首页 > 编程语言> > 斯坦福情绪分析得分java

斯坦福情绪分析得分java

作者:互联网

我使用Stanford core NLP库进行情绪分析.下面的代码返回一个示例的类,但我怎样才能获得分数?例如-0.3表示负面等

private int getScore(String line) {
    boolean isrun = false;
    StanfordCoreNLP pipeline = null;
    if(!isrun){
        Properties props = getProperties();
        pipeline = new StanfordCoreNLP(props);
        isrun = true;
    }
    Annotation annotation;

    int sentiment = -1;
    if (line != null && line.length() > 0) {
        annotation = pipeline.process(line);
        for (CoreMap sentence : annotation.get(CoreAnnotations.SentencesAnnotation.class)) {
            Tree tree = sentence.get(SentimentCoreAnnotations.AnnotatedTree.class);
            sentiment = RNNCoreAnnotations.getPredictedClass(tree);
        }
    }
    return sentiment;
}

编辑

在线demo,当鼠标在图形的根上时,我们可以看到该示例为负72%.怎么能得到这个数字?

解决方法:

0.下载Stanford NLP Core Lib并导入外部库stanford-corenlp-3.5.2-models.jar,stanford-corenlp-3.5.2.jar,stanford-corenlp-3.5.2-sources.jar和ejml-0.23.jar进入这个包.

1.在Eclipse中构建此类NLP

import java.util.Properties;
import org.ejml.simple.SimpleMatrix;
import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.neural.rnn.RNNCoreAnnotations;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.sentiment.SentimentCoreAnnotations;
import edu.stanford.nlp.sentiment.SentimentCoreAnnotations.SentimentAnnotatedTree;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.util.CoreMap;

public class NLP {
static StanfordCoreNLP pipeline;

public static void init() {
    Properties props = new Properties();
    props.setProperty("annotators", "tokenize, ssplit, parse, sentiment");
    pipeline = new StanfordCoreNLP(props);
}

public static int findSentiment(String tweet) {

    int mainSentiment = 0;
    if (tweet != null && tweet.length() > 0) {
        int longest = 0;
        Annotation annotation = pipeline.process(tweet);
        for (CoreMap sentence : annotation
                .get(CoreAnnotations.SentencesAnnotation.class)) {
            Tree tree = sentence
                    .get(SentimentAnnotatedTree.class);
            int sentiment = RNNCoreAnnotations.getPredictedClass(tree);
            SimpleMatrix sentiment_new = RNNCoreAnnotations.getPredictions(tree);             
            String partText = sentence.toString();
            if (partText.length() > longest) {
                mainSentiment = sentiment;
                longest = partText.length();
            }
        }
    }
    return mainSentiment;
    }
}

2.使用NLP构建一个新类来解析你的句子

import java.util.ArrayList;

public class What2Think {

    public static void main(String[] args) {
        ArrayList<String> tweets = new ArrayList<String>();
        tweets.add("In this country, \"democracy\" means pro-government. #irony");
        NLP.init();
        for(String tweet : tweets) {
            System.out.println(tweet + " : " + NLP.findSentiment(tweet));
        }
    }
}

运行

标签:java,stanford-nlp,sentiment-analysis
来源: https://codeday.me/bug/20190628/1318837.html