编程语言
首页 > 编程语言> > python – 使用潜在的语义分析进行聚类

python – 使用潜在的语义分析进行聚类

作者:互联网

假设我有一个文档语料库,我在其上运行LSA算法.如何使用应用SVD后获得的最终矩阵来语义聚类出现在我的文档语料库中的所有单词?维基百科说LSA可用于查找术语之间的关系. Python中是否有可用的库可以帮助我完成基于LSA语义聚类单词的任务?

解决方法:

尝试gensim(http://radimrehurek.com/gensim/index.html),只需按照以下说明安装:http://radimrehurek.com/gensim/install.html

那么这里是一个代码示例:

from gensim import corpora, models, similarities

documents = ["Human machine interface for lab abc computer applications",
             "A survey of user opinion of computer system response time",
             "The EPS user interface management system",
             "System and human system engineering testing of EPS",
             "Relation of user perceived response time to error measurement",
             "The generation of random binary unordered trees",
             "The intersection graph of paths in trees",
             "Graph minors IV Widths of trees and well quasi ordering",
             "Graph minors A survey"]

# remove common words and tokenize
stoplist = set('for a of the and to in'.split())
texts = [[word for word in document.lower().split() if word not in stoplist]
         for document in documents]

# remove words that appear only once
all_tokens = sum(texts, [])
tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)

texts = [[word for word in text if word not in tokens_once] for text in texts]

dictionary = corpora.Dictionary(texts)
corp = [dictionary.doc2bow(text) for text in texts]

# extract 400 LSI topics; use the default one-pass algorithm
lsi = models.lsimodel.LsiModel(corpus=corp, id2word=dictionary, num_topics=400)

# print the most contributing words (both positively and negatively) for each of the first ten topics
lsi.print_topics(10)

标签:python,nlp,cluster-analysis,lsa
来源: https://codeday.me/bug/20190625/1284650.html