python – 从PuLP迁移到Scipy
作者:互联网
我使用PuLP来解决一些最小化问题
有约束,超级和低限.
它非常简单干净.
但我只需要使用Scipy和Numpy
模块.
我在读:
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
Constrained minimization of multivariate scalar functions
但是我有点失落……一些好的灵魂可以发布一个小例子
这个PuLP在Scipy中有一个?
提前致谢.
MM
from pulp import *
'''
Minimize 1.800A + 0.433B + 0.180C
Constraint 1A + 1B + 1C = 100
Constraint 0.480A + 0.080B + 0.020C >= 24
Constraint 0.744A + 0.800B + 0.142C >= 76
Constraint 1C <= 2
'''
...
解决方法:
考虑以下:
import numpy as np
import scipy.optimize as opt
#Some variables
cost = np.array([1.800, 0.433, 0.180])
p = np.array([0.480, 0.080, 0.020])
e = np.array([0.744, 0.800, 0.142])
#Our function
fun = lambda x: np.sum(x*cost)
#Our conditions
cond = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 100},
{'type': 'ineq', 'fun': lambda x: np.sum(p*x) - 24},
{'type': 'ineq', 'fun': lambda x: np.sum(e*x) - 76},
{'type': 'ineq', 'fun': lambda x: -1*x[2] + 2})
bnds = ((0,100),(0,100),(0,100))
guess = [20,30,50]
opt.minimize(fun, guess, method='SLSQP', bounds=bnds, constraints = cond)
应该注意的是,eq条件应该等于零,而ineq函数将对任何大于零的值返回true.
我们获得:
status: 0
success: True
njev: 4
nfev: 21
fun: 97.884100000000345
x: array([ 40.3, 57.7, 2. ])
message: 'Optimization terminated successfully.'
jac: array([ 1.80000019, 0.43300056, 0.18000031, 0. ])
nit: 4
仔细检查平等:
output = np.array([ 40.3, 57.7, 2. ])
np.sum(output) == 100
True
round(np.sum(p*output),8) >= 24
True
round(np.sum(e*output),8) >= 76
True
舍入来自双点精度误差:
np.sum(p*output)
23.999999999999996
标签:python,numpy,scipy,pulp 来源: https://codeday.me/bug/20190624/1281649.html