编程语言
首页 > 编程语言> > Java与算法之(4) - 数字全排列

Java与算法之(4) - 数字全排列

作者:互联网

全排列是指n个数(或其他字符)所有可能的排列顺序,例如1 2 3三个数字的全排列是

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

那么问题来了,任意输入一个大于1的数字n,列出1-n这n个数字的全排列。

如果尝试手动列举一下1 2 3的全排列,会发现通常我们会在头脑中制定好规则,并按照既定规则进行枚举,从而得到所有排列。

在这里我们制定的规则是:

(想象我们手里拿了3个数字,地上有A、B、C三个空位)

1)在每一个空位前,都按照1->2->3的顺序尝试放下一个数字,如果该数字已经放下则尝试下一个

2)每放下一个数字后向后移动一格,然后重复1->2->3的尝试

3)如果当前位置没有新的可能性,取回当前位置的数字并左移一格从新尝试

按上面规则很容易推算出第一种排列是1 2 3

取回3,返回B位置,取回2,然后按1->2->3尝试,发现可以放下3,右移到C,尝试后放下2,得到1 3 2

接下来必须返回到A的位置才有新的可能性,此时已经取回所有数字,按规则放下2,移到B,放下1,移到C,放下3,得到2 1 3

。。。

下面来看实现的代码:

    public class Permutation {
     
        private int max;
        private int[] array;
        private int[] hold;
        
        public Permutation(int max) {
            this.max = max;
            array = new int[max + 1];
            hold = new int[max + 1];
        }
        
        public void permute(int step) {
            if(step == max + 1) {
                for(int i = 1; i <= max; i++) {
                    System.out.print(array[i] + " ");
                }
                System.out.println();
                return;  //返回上一步, 即最近一次调用permute方法的后一行
            }
            //按照1->2->3->...->n的顺序尝试
            for(int num = 1; num <= max; num++) {
                //判断是否还持有该数字
                if(hold[num] == 0) {
                    array[step] = num;
                    hold[num] = 1;
                    //递归: 右移一格重复遍历数字的尝试
                    permute(step + 1);
                    //回到当前位置时取回当前位置数字
                    hold[num] = 0;
                }
            }
        }
        
        public static void main(String[] args) {
            Permutation fa = new Permutation(3);
            fa.permute(1);
        }
    }


运行输出

    1 2 3
    1 3 2
    2 1 3
    2 3 1
    3 1 2
    3 2 1
我们用一个伪时序图来帮助理解递归调用的执行过程

 

顺便说一句,全排列问题还有多种算法,本文中使用的是深度优先算法的模型。
---------------------
原文:https://blog.csdn.net/autfish/article/details/52385253

标签:尝试,排列,Java,数字,int,max,算法,放下
来源: https://www.cnblogs.com/xiaoshen666/p/11059764.html