python – A *算法找不到最短路径
作者:互联网
我试图在python中实现A *算法,但在尝试查找此映射的路径时遇到了问题:
X X X X X X X S = Start
0 0 0 X 0 0 0 E = End
0 S 0 X 0 E 0 X = Wall
0 0 0 X 0 0 0
0 0 0 0 0 0 0
我正在使用曼哈顿方法.我的实现确实找到了一条路径,但不是最短路径.错误从第二步开始 – 向右移动后开始.此时它可以向上移动,启发式成本将是四(三个右,一个下)或下(三个右,一个上).有没有办法让它选择下来获得最短的路径?
码:
class Node:
def __init__(self, (x, y), g, h, parent):
self.x = x
self.y = y
self.g = g
self.h = h
self.f = g+h
self.parent = parent
def __eq__(self, other):
if other != None:
return self.x == other.x and self.y == other.y
return False
def __lt__(self, other):
if other != None:
return self.f < other.f
return False
def __gt__(self, other):
if other != None:
return self.f > other.f
return True
def __str__(self):
return "(" + str(self.x) + "," + str(self.y) + ") " + str(self.f)
def find_path(start, end, open_list, closed_list, map, no_diag=True, i=1):
closed_list.append(start)
if start == end or start == None:
return closed_list
new_open_list = []
for x, y in [(-1,1),(-1,-1),(1,-1),(1,1),(0,-1),(0,1),(-1,0),(1,0)]:
full_x = start.x + x
full_y = start.y + y
g = 0
if x != 0 and y != 0:
if no_diag:
continue
g = 14
else:
g = 10
h = 10 * (abs(full_x - end.x) + abs(full_y - end.y))
n = Node((full_x,full_y),g,h,start)
if 0 <= full_y < len(map) and 0 <= full_x < len(map[0]) and map[full_y][full_x] != 1 and n not in closed_list:
if n in open_list:
if open_list[open_list.index(n)].g > n.g:
new_open_list.append(n)
else:
new_open_list.append(open_list[open_list.index(n)])
else:
new_open_list.append(n)
if new_open_list == None or len(new_open_list) == 0:
return find_path(start.parent, end, open_list, closed_list, map, no_diag, i-1)
new_open_list.sort()
return find_path(new_open_list[0], end, new_open_list, closed_list, map, no_diag)
解决方法:
您似乎正在为每个节点构建一个新的打开列表,该列表仅包含该节点的邻居.这实质上使您的搜索成为深度优先搜索的形式,而A *应该是最好的搜索.
您需要使用一个打开的列表,当您访问该节点时,该列表将随每个节点的邻居进行更新.打开列表中的旧节点必须保留在那里,直到它们被遍历并移动到关闭列表中.
关于你在你的问题中所说的,搜索尝试在向下移动之前是可以的(因为根据启发式,它们与目标的距离相同).重要的是,最终选择的路径将是最短的.
标签:python,algorithm,a-star 来源: https://codeday.me/bug/20190613/1235828.html