纯Python实现人工智能
作者:互联网
很久以前微信流行过一个小游戏:打飞机,这个游戏简单又无聊。在2017年来临之际,我就实现一个超级弱智的人工智能(AI),这货可以躲避从屏幕上方飞来的飞机。本帖只使用纯Python实现,不依赖任何高级库。
本文的AI基于neuro-evolution,首先简单科普一下neuro-evolution。从neuro-evolution这个名字就可以看出它由两部分组成-neuro and evolution,它是使用进化算法(遗传算法是进化算法的一种)提升人工神经网络的机器学习技术,其实就是用进化算法改进并选出最优的神经网络。如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。
neuro-evolution
定义一些变量:
- import math
- import random
- # 神经网络3层, 1个隐藏层; 4个input和1个output
- network = [4, [16], 1]
- # 遗传算法相关
- population = 50
- elitism = 0.2
- random_behaviour = 0.1
- mutation_rate = 0.5
- mutation_range = 2
- historic = 0
- low_historic = False
- score_sort = -1
- n_child = 1
- 1
定义神经网络:
- # 激活函数
- def sigmoid(z):
- return 1.0/(1.0+math.exp(-z))
- # random number
- def random_clamped():
- return random.random()2-1
- # "神经元"
- class Neuron():
- def init(self):
- self.biase = 0
- self.weights = []
- def init_weights(self, n):
- self.weights = []
- for i in range(n):
- self.weights.append(random_clamped())
- def repr(self):
- return ‘Neuron weight size:{} biase value:{}’.format(len(self.weights), self.biase)
- # 层
- class Layer():
- def init(self, index):
- self.index = index
- self.neurons = []
- def init_neurons(self, n_neuron, n_input):
- self.neurons = []
- for i in range(n_neuron):
- neuron = Neuron()
- neuron.init_weights(n_input)
- self.neurons.append(neuron)
- def repr(self):
- return ‘Layer ID:{} Layer neuron size:{}’.format(self.index, len(self.neurons))
- # 神经网络
- class NeuroNetwork():
- def init(self):
- self.layers = []
- # input:输入层神经元数 hiddens:隐藏层 output:输出层神经元数
- def init_neuro_network(self, input, hiddens , output):
- index = 0
- previous_neurons = 0
- # input
- layer = Layer(index)
- layer.init_neurons(input, previous_neurons)
- previous_neurons = input
- self.layers.append(layer)
- index += 1
- # hiddens
- for i in range(len(hiddens)):
- layer = Layer(index)
- layer.init_neurons(hiddens[i], previous_neurons)
- previous_neurons = hiddens[i]
- self.layers.append(layer)
- index += 1
- # output
- layer = Layer(index)
- layer.init_neurons(output, previous_neurons)
- self.layers.append(layer)
- def get_weights(self):
- data = { ‘network’:[], ‘weights’:[] }
- for layer in self.layers:
- data[‘network’].append(len(layer.neurons))
- for neuron in layer.neurons:
- for weight in neuron.weights:
- data[‘weights’].append(weight)
- return data
- def set_weights(self, data):
- previous_neurons = 0
- index = 0
- index_weights = 0
- self.layers = []
- for i in data[‘network’]:
- layer = Layer(index)
- layer.init_neurons(i, previous_neurons)
- for j in range(len(layer.neurons)):
- for k in range(len(layer.neurons[j].weights)):
- layer.neurons[j].weights[k] = data[‘weights’][index_weights]
- index_weights += 1
- previous_neurons = i
- index += 1
- self.layers.append(layer)
- # 输入游戏环境中的一些条件(如敌机位置), 返回要执行的操作
- def feed_forward(self, inputs):
- for i in range(len(inputs)):
- self.layers[0].neurons[i].biase = inputs[i]
- prev_layer = self.layers[0]
- for i in range(len(self.layers)):
- # 第一层没有weights
- if i == 0:
- continue
- for j in range(len(self.layers[i].neurons)):
- sum = 0
- for k in range(len(prev_layer.neurons)):
- sum += prev_layer.neurons[k].biase * self.layers[i].neurons[j].weights[k]
- self.layers[i].neurons[j].biase = sigmoid(sum)
- prev_layer = self.layers[i]
- out = []
- last_layer = self.layers[-1]
- for i in range(len(last_layer.neurons)):
- out.append(last_layer.neurons[i].biase)
- return out
- def print_info(self):
- for layer in self.layers:
- print(layer)
- 1
遗传算法:
- # "基因组"
- class Genome():
- def init(self, score, network_weights):
- self.score = score
- self.network_weights = network_weights
- class Generation():
- def init(self):
- self.genomes = []
- def add_genome(self, genome):
- i = 0
- for i in range(len(self.genomes)):
- if score_sort < 0:
- if genome.score > self.genomes[i].score:
- break
- else:
- if genome.score < self.genomes[i].score:
- break
- self.genomes.insert(i, genome)
- # 杂交+突变
- def breed(self, genome1, genome2, n_child):
- datas = []
- for n in range(n_child):
- data = genome1
- for i in range(len(genome2.network_weights[‘weights’])):
- if random.random() <= 0.5:
- data.network_weights[‘weights’][i] = genome2.network_weights[‘weights’][i]
- for i in range(len(data.network_weights[‘weights’])):
- if random.random() <= mutation_rate:
- data.network_weights[‘weights’][i] += random.random() * mutation_range * 2 - mutation_range
- datas.append(data)
- return datas
- # 生成下一代
- def generate_next_generation(self):
- nexts = []
- for i in range(round(elitismpopulation)):
- if len(nexts) < population:
- nexts.append(self.genomes[i].network_weights)
- for i in range(round(random_behaviourpopulation)):
- n = self.genomes[0].network_weights
- for k in range(len(n[‘weights’])):
- n[‘weights’][k] = random_clamped()
- if len(nexts) < population:
- nexts.append(n)
- max_n = 0
- while True:
- for i in range(max_n):
- childs = self.breed(self.genomes[i], self.genomes[max_n], n_child if n_child > 0 else 1)
- for c in range(len(childs)):
- nexts.append(childs[c].network_weights)
- if len(nexts) >= population:
- return nexts
- max_n += 1
- if max_n >= len(self.genomes)-1:
- max_n = 0
- 1
NeuroEvolution:
- class Generations():
- def init(self):
- self.generations = []
- def first_generation(self):
- out = []
- for i in range(population):
- nn = NeuroNetwork()
- nn.init_neuro_network(network[0], network[1], network[2])
- out.append(nn.get_weights())
- self.generations.append(Generation())
- return out
- def next_generation(self):
- if len(self.generations) == 0:
- return False
- gen = self.generations[-1].generate_next_generation()
- self.generations.append(Generation())
- return gen
- def add_genome(self, genome):
- if len(self.generations) == 0:
- return False
- return self.generations[-1].add_genome(genome)
- class NeuroEvolution():
- def init(self):
- self.generations = Generations()
- def restart(self):
- self.generations = Generations()
- def next_generation(self):
- networks = []
- if len(self.generations.generations) == 0:
- networks = self.generations.first_generation()
- else:
- networks = self.generations.next_generation()
- nn = []
- for i in range(len(networks)):
- n = NeuroNetwork()
- n.set_weights(networks[i])
- nn.append(n)
- if low_historic:
- if len(self.generations.generations) >= 2:
- genomes = self.generations.generations[len(self.generations.generations) - 2].genomes
- for i in range(genomes):
- genomes[i].network = None
- if historic != -1:
- if len(self.generations.generations) > historic+1:
- del self.generations.generations[0:len(self.generations.generations)-(historic+1)]
- return nn
- def network_score(self, score, network):
- self.generations.add_genome(Genome(score, network.get_weights()))
- 1
是AI就躲个飞机
- import pygame
- import sys
- from pygame.locals import
- import random
- import math
- import neuro_evolution
- BACKGROUND = (200, 200, 200)
- SCREEN_SIZE = (320, 480)
- class Plane():
- def init(self, plane_image):
- self.plane_image = plane_image
- self.rect = plane_image.get_rect()
- self.width = self.rect[2]
- self.height = self.rect[3]
- self.x = SCREEN_SIZE[0]/2 - self.width/2
- self.y = SCREEN_SIZE[1] - self.height
- self.move_x = 0
- self.speed = 2
- self.alive = True
- def update(self):
- self.x += self.move_x * self.speed
- def draw(self, screen):
- screen.blit(self.plane_image, (self.x, self.y, self.width, self.height))
- def is_dead(self, enemes):
- if self.x < -self.width or self.x + self.width > SCREEN_SIZE[0]+self.width:
- return True
- for eneme in enemes:
- if self.collision(eneme):
- return True
- return False
- def collision(self, eneme):
- if not (self.x > eneme.x + eneme.width or self.x + self.width < eneme.x or self.y > eneme.y + eneme.height or self.y + self.height < eneme.y):
- return True
- else:
- return False
- def get_inputs_values(self, enemes, input_size=4):
- inputs = []
- for i in range(input_size):
- inputs.append(0.0)
- inputs[0] = (self.x1.0 / SCREEN_SIZE[0])
- index = 1
- for eneme in enemes:
- inputs[index] = eneme.x1.0 / SCREEN_SIZE[0]
- index += 1
- inputs[index] = eneme.y*1.0 / SCREEN_SIZE[1]
- index += 1
- #if len(enemes) > 0:
- #distance = math.sqrt(math.pow(enemes[0].x + enemes[0].width/2 - self.x + self.width/2, 2) + math.pow(enemes[0].y + enemes[0].height/2 - self.y + self.height/2, 2));
- if len(enemes) > 0 and self.x < enemes[0].x:
- inputs[index] = -1.0
- index += 1
- else:
- inputs[index] = 1.0
- return inputs
- class Enemy():
- def init(self, enemy_image):
- self.enemy_image = enemy_image
- self.rect = enemy_image.get_rect()
- self.width = self.rect[2]
- self.height = self.rect[3]
- self.x = random.choice(range(0, int(SCREEN_SIZE[0] - self.width/2), 71))
- self.y = 0
- def update(self):
- self.y += 6
- def draw(self, screen):
- screen.blit(self.enemy_image, (self.x, self.y, self.width, self.height))
- def is_out(self):
- return True if self.y >= SCREEN_SIZE[1] else False
- class Game():
- def init(self):
- pygame.init()
- self.screen = pygame.display.set_mode(SCREEN_SIZE)
- self.clock = pygame.time.Clock()
- pygame.display.set_caption(‘是AI就躲个飞机’)
- self.ai = neuro_evolution.NeuroEvolution()
- self.generation = 0
- self.max_enemes = 1
- # 加载飞机、敌机图片
- self.plane_image = pygame.image.load(‘plane.png’).convert_alpha()
- self.enemy_image = pygame.image.load(‘enemy.png’).convert_alpha()
- def start(self):
- self.score = 0
- self.planes = []
- self.enemes = []
- self.gen = self.ai.next_generation()
- for i in range(len(self.gen)):
- plane = Plane(self.plane_image)
- self.planes.append(plane)
- self.generation += 1
- self.alives = len(self.planes)
- def update(self, screen):
- for i in range(len(self.planes)):
- if self.planes[i].alive:
- inputs = self.planes[i].get_inputs_values(self.enemes)
- res = self.gen[i].feed_forward(inputs)
- if res[0] < 0.45:
- self.planes[i].move_x = -1
- elif res[0] > 0.55:
- self.planes[i].move_x = 1
- self.planes[i].update()
- self.planes[i].draw(screen)
- if self.planes[i].is_dead(self.enemes) == True:
- self.planes[i].alive = False
- self.alives -= 1
- self.ai.network_score(self.score, self.gen[i])
- if self.is_ai_all_dead():
- self.start()
- self.gen_enemes()
- for i in range(len(self.enemes)):
- self.enemes[i].update()
- self.enemes[i].draw(screen)
- if self.enemes[i].is_out():
- del self.enemes[i]
- break
- self.score += 1
- print(“alive:{}, generation:{}, score:{}”.format(self.alives, self.generation, self.score), end=’\r’)
- def run(self, FPS=1000):
- while True:
- for event in pygame.event.get():
- if event.type == QUIT:
- pygame.quit()
- sys.exit()
- self.screen.fill(BACKGROUND)
- self.update(self.screen)
- pygame.display.update()
- self.clock.tick(FPS)
- def gen_enemes(self):
- if len(self.enemes) < self.max_enemes:
- enemy = Enemy(self.enemy_image)
- self.enemes.append(enemy)
- def is_ai_all_dead(self):
- for plane in self.planes:
- if plane.alive:
- return False
- return True
- game = Game()
- game.start()
- game.run()
- 1
AI的工作逻辑
假设你是AI,你首先繁殖一个种群(50个个体),开始的个体大都是歪瓜裂枣(上来就被敌机撞)。但是,即使是歪瓜裂枣也有表现好的,在下一代,你会使用这些表现好的再繁殖一个种群,经过代代相传,存活下来的个体会越来越优秀。其实就是仿达尔文进化论,种群->自然选择->优秀个体->杂交、变异->种群->循环n世代。ai开始时候的表现:
经过几百代之后,ai开始娱乐的躲飞机.
标签:Python,self,len,人工智能,range,neurons,weights,实现,def 来源: https://blog.csdn.net/qq_45049692/article/details/90290833