编程语言
首页 > 编程语言> > python多线程中锁的概念

python多线程中锁的概念

作者:互联网

1 2 3 4 5 6 7 8 mutex = threading.Lock() #锁的使用 #创建锁 mutex = threading.Lock() #锁定 mutex.acquire([timeout]) #释放 mutex.release()

概念

好几个人问我给资源加锁是怎么回事,其实并不是给资源加锁, 而是用锁去锁定资源,你可以定义多个锁, 像下面的代码, 当你需要独占某一资源时,任何一个锁都可以锁这个资源

就好比你用不同的锁都可以把相同的一个门锁住是一个道理

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 import  threading    import  time           counter = 0  counter_lock = threading.Lock() #只是定义一个锁,并不是给资源加锁,你可以定义多个锁,像下两行代码,当你需要占用这个资源时,任何一个锁都可以锁这个资源  counter_lock2 = threading.Lock()   counter_lock3 = threading.Lock()      #可以使用上边三个锁的任何一个来锁定资源       class  MyThread(threading.Thread):#使用类定义thread,继承threading.Thread       def  __init__(self,name):            threading.Thread.__init__(self)            self.name = "Thread-" + str(name)       def run(self):   #run函数必须实现           global counter,counter_lock #多线程是共享资源的,使用全局变量           time.sleep(1);             if counter_lock.acquire(): #当需要独占counter资源时,必须先锁定,这个锁可以是任意的一个锁,可以使用上边定义的3个锁中的任意一个              counter += 1                 print "I am %s, set counter:%s"  % (self.name,counter)                counter_lock.release() #使用完counter资源必须要将这个锁打开,让其他线程使用                  if  __name__ ==  "__main__":        for in xrange(1,101):            my_thread = MyThread(i)          my_thread.start()

线程不安全:

最普通的一个多线程小例子。我一笔带过地讲一讲,我创建了一个继承Thread类的子类MyThread,作为我们的线程启动类。按照规定,重写Thread的run方法,我们的线程启动起来后会自动调用该方法。于是我首先创建了10个线程,并将其加入列表中。再使用一个for循环,开启每个线程。在使用一个for循环,调用join方法等待所有线程结束才退出主线程。

这段代码看似简单,但实际上隐藏着一个很大的问题,只是在这里没有体现出来。你真的以为我创建了10个线程,并按顺序调用了这10个线程,每个线程为n增加了1.实际上,有可能是A线程执行了n++,再C线程执行了n++,再B线程执行n++。

这里涉及到一个“锁”的问题,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期(比如我们在每个线程的run方法中加入一个time.sleep(1),并同时输出线程名称,则我们会发现,输出会乱七八糟。因为可能我们的一个print语句只打印出一半的字符,这个线程就被暂停,执行另一个去了,所以我们看到的结果很乱),这种现象叫做“线程不安全”

 

线程锁:

于是,Threading模块为我们提供了一个类,Threading.Lock,锁。我们创建一个该类对象,在线程函数执行前,“抢占”该锁,执行完成后,“释放”该锁,则我们确保了每次只有一个线程占有该锁。这时候对一个公共的对象进行操作,则不会发生线程不安全的现象了。

于是,我们把代码更改如下:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 # coding : uft-8 __author__ = 'Phtih0n' import threading, time class MyThread(threading.Thread):     def __init__(self):         threading.Thread.__init__(self)     def run(self):         global n, lock         time.sleep(1)         if lock.acquire():             print n , self.name             += 1             lock.release() if "__main__" == __name__:     = 1     ThreadList = []     lock = threading.Lock()     for in range(1200):         = MyThread()         ThreadList.append(t)     for in ThreadList:         t.start()     for in ThreadList:         t.join()
1 2 3 4 5 6 7 8 9 10 11 1 Thread-2 2 Thread-3 3 Thread-4 4 Thread-6 5 Thread-7 6 Thread-1 7 Thread-8 8 Thread-9 9 Thread-5   Process finished with exit code 0

  

我们看到,我们先建立了一个threading.Lock类对象lock,在run方法里,我们使用lock.acquire()获得了这个锁。此时,其他的线程就无法再获得该锁了,他们就会阻塞在“if lock.acquire()”这里,直到锁被另一个线程释放:lock.release()。

所以,if语句中的内容就是一块完整的代码,不会再存在执行了一半就暂停去执行别的线程的情况。所以最后结果是整齐的。

就如同在java中,我们使用synchronized关键字修饰一个方法,目的一样,让某段代码被一个线程执行时,不会打断跳到另一个线程中。

这是多线程占用一个公共对象时候的情况。如果多个线程要调用多个现象,而A线程调用A锁占用了A对象,B线程调用了B锁占用了B对象,A线程不能调用B对象,B线程不能调用A对象,于是一直等待。这就造成了线程“死锁”。

Threading模块中,也有一个类,RLock,称之为可重入锁。该锁对象内部维护着一个Lock和一个counter对象。counter对象记录了acquire的次数,使得资源可以被多次require。最后,当所有RLock被release后,其他线程才能获取资源。在同一个线程中,RLock.acquire可以被多次调用,利用该特性,可以解决部分死锁问题。

标签:__,中锁,Thread,python,lock,counter,threading,线程,多线程
来源: https://www.cnblogs.com/jinan1/p/10642411.html