编程语言
首页 > 编程语言> > CG从零开始] 5. 搞清 MVP 矩阵理论 + 实践

CG从零开始] 5. 搞清 MVP 矩阵理论 + 实践

作者:互联网

1. 加载 fbx 模型#

在第 3 篇中介绍了如何安装 pyassimp,这回我们来用一下,我们先定义一个简单的 Mesh 和 SubMesh 类保存加载的模型的数据,然后再定义一个模型加载类,用来加载数据,代码如下所示,比较简单。

# mesh.py
class SubMesh:
    def __init__(self, indices) -> None:
        self.indices = indices

class Mesh:
    def __init__(self) -> None:
        self.vertices = []
        self.normals = []
        self.subMeshes = []

# model_importer.py
# pyassimp 4.1.4 has some problem will lead to randomly crash, use 4.1.3 to fix
# should set link path to find the dylib
import pyassimp
import numpy as np
from .mesh import Mesh, SubMesh

class ModelImporter:
    def __init__(self) -> None:
        pass

    def load_mesh(self, path: str):
        scene = pyassimp.load(path)
        mmeshes = []
        for mesh in scene.meshes:
            mmesh = Mesh()
            mmesh.vertices = np.reshape(np.copy(mesh.vertices), (1,-1)).squeeze(0)
            print(mmesh.vertices)
            mmesh.normals = np.reshape(np.copy(mesh.normals),(1,-1)).squeeze(0)
            mmesh.subMeshes = []
            mmesh.subMeshes.append(SubMesh(np.reshape(np.copy(mesh.faces), (1,-1)).squeeze(0)))
            mmeshes.append(mmesh)
        return mmeshes

2. 定义 Transform#

Transform 用来描述物体的位置、旋转、缩放信息,可以说是比较基础的,所以必不可少,详细的解释在代码的注释里。

import numpy as np
from scipy.spatial.transform import Rotation as R

class Transform:

    def __init__(self) -> None:
        # 为了简单,目前我用欧拉角来存储旋转信息
        self._eulerAngle = [0,0,0]
        self._pos = [0,0,0]
        self._scale = [1,1,1]

    # -- 都是常规的 get set,这里略去
    # ......

    # 这就是我们所需要的 model 矩阵,注意这里没有考虑的物体的层级
    # 关系,默认物体都是在最顶层,所以 local 和 world 坐标是一样
    # 后续的文章会把层级关系考虑进来
    def localMatrix(self):
        # 按照 TRS 的构建方式
        # 位移矩阵 * 旋转矩阵 * 缩放矩阵
        mat = np.identity(4)
        # 对角线是缩放
        for i in range(3):
            mat[i,i] = self._scale[i]
        rot = np.identity(4)
        rot[:3,:3] = R.from_euler("xyz", self._eulerAngle, degrees = True).as_matrix()
        mat = rot @ mat
        for i in range(3):
            mat[i,3] = self._pos[i]
        return mat

    # 将世界坐标变换到当前物体的坐标系下,注意这里也是没有考虑层级关系的
    # 这个可以用来获得从世界坐标系到相机坐标系的转换。
    def get_to_Local(self):
        mat = self.localMatrix()
        ori = np.identity(4)
        ori[:3,:3] = mat[:3,:3]
        ori = np.transpose(ori)
        pos = np.identity(4)
        pos[0:3,3] = -mat[0:3,3]
        return ori @ pos
        

3.定义相机#

最后我们定义相机,目前相机的 Transform 信息可以用来定义 View 矩阵,其他例如 fov 等主要用来定义投影矩阵。

from math import cos, sin
import math
import numpy as np

class Camera:
    def __init__(self) -> None:
        self._fov = 60
        self._near = 0.3
        self._far = 1000
        self._aspect = 5 / 4

    # -- 都是常规的 get set,这里略去
    # ......
    
    # 完全参照投影矩阵的公式定义
    def getProjectionMatrix(self):
        r = math.radians(self._fov / 2)
        cotangent = cos(r) / sin(r)
        deltaZ = self._near - self._far
        projection = np.zeros((4,4))
        projection[0,0] = cotangent / self._aspect
        projection[1,1] = cotangent
        projection[2,2] = (self._near + self._far) / deltaZ
        projection[2,3] = 2 * self._near * self._far / deltaZ
        projection[3,2] = -1
        return projection

4. 构建 MVP 矩阵#

完成了上述的步骤后,我们就可以构建 MVP 矩阵了。

...
# 定义物体的 transform
trans = transform.Transform()
trans.localPosition = [0,0,0]
trans.localScale = [0.005,0.005,0.005]
trans.localEulerAngle = [0,10,0]
# 获取 model 矩阵
model = trans.localMatrix()

# 定义相机的 transform
viewTrans = transform.Transform()
viewTrans.localPosition = [0,2,2]
viewTrans.localEulerAngle = [-40,0,0]
# 获取 view 矩阵
view = viewTrans.get_to_Local()

# 定义相机并获得 projection 矩阵
cam = Camera()
proj = cam.getProjectionMatrix()
# 构建 MVP 矩阵
mvp = np.transpose(proj @ view @ model)
# 作为 uniform 传入 shader 中,然后 shader 中将顶点位置乘上mvp矩阵。
mshader.set_mat4("u_mvp", mvp)
...

然后加载模型,构建一下顶点数组和索引数组,我给每个顶点额外添加了随机的颜色

importer = ModelImporter()

meshes = importer.load_mesh("box.fbx")
vert = []
for i in range(len(meshes[0].vertices)):
    if i % 3 == 0:
        vert.extend([meshes[0].vertices[i],meshes[0].vertices[i + 1],meshes[0].vertices[i + 2]])
        vert.extend([meshes[0].normals[i],meshes[0].normals[i + 1],meshes[0].normals[i + 2]])
        vert.extend([random.random(),random.random(),random.random()])
inde = meshes[0].subMeshes[0].indices
# 开一下深度测试
gl.glEnable(gl.GL_DEPTH_TEST)

标签:CGO,实践,理论,数据,数组,初始化数组
来源: