编程语言
首页 > 编程语言> > 了解Pytorch|Get Started with PyTorch

了解Pytorch|Get Started with PyTorch

作者:互联网

Basics

就像Tensorflow一样,我们也将继续在PyTorch中玩转Tensors。

从数据(列表)中创建张量

data = [[1, 2],[3, 4]]
tensors = torch.tensor(data)
tensors

tensor([[1, 2],
[3, 4]])

从NumPy创建

np_array = np.arange(10)
tensor_np = torch.from_numpy(np_array)
tensor_np

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=torch.int32)

形状、ndim和dtype

这与我们在《Numpy教程--第1天》中看到的相同。

tensor_np.shape

torch.Size([10])

tensor_np.ndim

1

tensor_np.dtype

torch.int32

张量操作(Tensor_Operations)

ten1 = torch.tensor([1,2,3])
ten2 = torch.tensor([4,5,6])
ten1+ten2

tensor([5, 7, 9])

你可以使用+torch.add来执行张量添加。

torch.sub(ten2,ten1)

tensor([3, 3, 3])

torch.add(ten1,ten2)

tensor([5, 7, 9])

torch.subtract(ten2,ten1)

tensor([3, 3, 3])

你可以使用- 或torch.sub来执行张量添加。

ten1*10

tensor([10, 20, 30])

深度学习中非常重要的操作--矩阵乘法

Rules of Matrix Multiplication:

torch.matmul(ten1,ten2)

tensor(32)

matrix4_3 = torch.tensor([[1,2,3],
                        [4,5,6],
                        [7,8,9],
                        [10,11,12]])
matrix4_3.shape

torch.Size([4, 3])

matrix3_2 = torch.tensor([[1,2],
                        [3,4],
                        [5,6]])
matrix3_2.shape

torch.Size([3, 2])

result = torch.matmul(matrix4_3,matrix3_2) #=> will result in (4,2)
result

tensor([[ 22, 28],
[ 49, 64],
[ 76, 100],
[103, 136]])

result.shape

torch.Size([4, 2])

你也可以使用torch.mm(),这是torch.matmul()的简称。

torch.mm(matrix4_3,matrix3_2)

tensor([[ 22, 28],
[ 49, 64],
[ 76, 100],
[103, 136]])

#张量的转置
matrix4_3

tensor([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]])

matrix4_3.T

tensor([[ 1, 4, 7, 10],
[ 2, 5, 8, 11],
[ 3, 6, 9, 12]])

torch.t(matrix4_3)

tensor([[ 1, 4, 7, 10],
[ 2, 5, 8, 11],
[ 3, 6, 9, 12]])

更多张量操作

tensorZeroes = torch.zeros((3,3))
tensorZeroes

tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])

tensorOnes = torch.ones((3,3))
tensorOnes

tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

tensorRandomN = torch.randn((3,3))  #includes negative tensors
tensorRandomN

tensor([[ 1.3255, -0.4937, 1.0488],
[ 1.1797, -0.5422, -0.9703],
[-0.1761, 1.0742, 0.5459]])

tensorRandom = torch.rand((3,3))  #includes only positive tensors
tensorRandom

tensor([[0.2013, 0.9272, 0.7866],
[0.5887, 0.9900, 0.3554],
[0.6128, 0.3316, 0.6635]])

customFill = torch.full((3,3),5)
customFill

tensor([[5, 5, 5],
[5, 5, 5],
[5, 5, 5]])

initialFill = torch.full((3,3),0.01)
initialFill

tensor([[0.0100, 0.0100, 0.0100],
[0.0100, 0.0100, 0.0100],
[0.0100, 0.0100, 0.0100]])

快速入门Torchvision

安装Torchvision,Torchvision软件包,包括流行的数据集、模型架构和计算机视觉的常见图像转换。

!pip install torchvision --no-deps -i https://pypi.tuna.tsinghua.edu.cn/simple
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
from torch import nn
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)
type(training_data)

torchvision.datasets.mnist.FashionMNIST

Dataloader在我们的数据集上包裹了一个迭代器,并支持自动批处理、采样、洗牌和多进程数据加载。这里我们定义了一个64的批处理量,即dataloader可迭代的每个元素将返回64个特征和标签的批次。

标签:icode9,Pytorch,Started,数据,教程,Numpy,架构
来源: