C++ 特殊矩阵的压缩存储算法
作者:互联网
1. 前言
什么是特殊矩阵?
C++
,一般使用二维数组
存储矩阵数据。
在实际存储时,会发现矩阵中有许多值相同的数据或有许多零数据,且分布呈现出一定的规律,称这类型的矩阵为特殊矩阵
。
为了节省存储空间,可以设计算法,对这类特殊矩阵
进行压缩存储,让多个相同的非零数据只分配一个存储空间;对零数据不分配空间。
本文将讲解如何压缩这类特殊矩阵,以及压缩后如何保证矩阵的常规操作不受影响。
2. 压缩对称矩阵
什么是对称矩阵?
在一个n
阶矩阵A
中,若所有数据满足如下述特性,则可称A
为对称矩阵。
-
a[i][j]==a[j][i]
i
是数据在矩阵中的行号。j
是数据在矩阵中的列号。 -
0<<i,j<<n-1
在n
阶对称矩阵 a[i][j]
中,当i==j(行号和列号相同)
时所有元素所构建成的集合称为主对角线。
如下图所示:
对称矩阵
以主对角线为分界线,把整个矩阵分成 2
个三角区域,主对角线之上的称为上三角
,主对角线之下的区域称为下三角
。
对称矩阵的上三角
和下三角
区域中的元素是相同的,以n
行n
列的二维数组存储时,会浪费近一半的空间,可以采压缩机制,将 二维数组中的数据压缩存储在一个一维数组中,这个过程也称为数据线性化
。
线性过程时,一维数组的空间需要多大?
n
阶矩阵,使用二维数组存储,理论上所需要的存储单元应该是 n2。
对称矩阵
以主对角线为分界线,上三角
和下三角
区域中的数据是相同的。注意,主对角线上的元素是需要单独存储的,主对角线上的数据个数为 n
。
真正需要的存储单元应该:(理论上所需要的存储单元-主对角线上的数据所需单元) / 2 +主对角线上的数据所需单元
。
如下表达式所述:
(n2-n)/2+n=n(n+1)/2
所以,可以把n
阶矩阵中的数据可以全部压缩在长度为 n(n+1)/2
的一维数组中,能节约近一半的存储空间。并且n
阶矩阵和一维数组之间满足如下的位置对应关系:
i>=j
表示矩阵中的下三角区域(包含主对角线上数据)。
i<j
表示矩阵中的上三角区域。
转存实现:
#include <iostream>
using namespace std;
int main(int argc, char** argv) {
//对称矩阵
int nums[4][4]= { {3,5,6,8},{5,4,7,9},{6,7,12,10},{8,9,10,13} };
//一维数组,根据上述公式,一维数组长度为 4*(4+1)/2=10
int zipNums[10]= {0};
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
if (i>=j) {
zipNums[ i*(i+1)/2+j]=nums[i][j];
} else {
zipNums[ j*(j+1)/2+i]=nums[i][j];
}
}
}
for(int i=0; i<10; i++) {
cout<<zipNums[i]<<"\t";
}
return 0;
}
如上是二维数组
压缩到一维数组
后的结果。
3. 压缩稀疏矩阵
什么是稀疏矩阵?
如果矩阵A
中的有效数据的数量远远小于矩阵实际能描述的数据的总数,则称A为稀疏矩阵
。
现假设有 m
行n
列的矩阵,其中所保存的元素个数为 c
,则稀疏因子
为:e=c/(m*n)
。当用二维数组存储稀疏矩阵中数据时,仅有少部分空间被利用,可以采用压缩机制来进行存储。
稀疏因子越小,表示有效数据越少。
稀疏矩阵
中的非零数据的存储位置是没有规律的,在压缩存储时,除了需要记录非零数据本身外还需要记录其位置信息。所以需要一个三元组对象(i,j,a[i][j])
对数据进行唯一性确定。
3.1 三元组表
为了便于描述,压缩前的矩阵称为原稀疏矩阵
,压缩后的稀疏矩阵称三元组表矩阵
。
原稀疏矩阵
也好,三元组表矩阵
也好。只要顶着矩阵
这个概念,就应该能进行矩阵相应的操作。矩阵的内置操作有很多,本文选择矩阵的转置操作来对比压缩前和压缩后的算法差异性。
什么是矩阵转置?
如有 m
行n
列的A
矩阵,所谓转置,指把A
变成 n
行m
列的 B
矩阵。A
和B
满足 A[i][j]=B[j][i]
。即A
的行变成B
的列。如下图所示:
A
稀疏矩阵转置成B
稀疏矩阵的原生实现:
//原矩阵
int aArray[4][5]= {{0,5,0,1,0},{0,0,3,0,0},{0,7,0,0,0},{0,0,9,0,0}};
//转置后矩阵
int bArray[5][4];
//转置算法
for(int row=0; row<4; row++) {
for(int col=0; col<5; col++) {
bArray[col][row]=aArray[row][col];
}
}
基于原生矩阵上的转置算法,其时间复杂度为 O(m*n)
,即O(n2)。
从存储角度而言,aArray
矩阵和其转置后的bArray
矩阵都是稀疏矩阵,使用二维数组存储会浪费大量的空间。有必要对其以三元组表
的形式进行压缩存储。