一些杂项算法
作者:互联网
KMP
代码实现
时间复杂度\(O(n + m)\)
int n, m;
int next[M + 1], f[N + 1];
char s[N + 2], p[M + 2];
void kmp() {
n = strlen(s + 1), m = strlen(p + 1);
int j = 0;
nxt[1] = 0;
for (int i = 2; i <= m; i++) {
while (j > 0 && p[j + 1] != p[i])
j = nxt[i];
if (p[i + 1] == p[i])
j++;
nxt[i] = j;
}
j = 0;
for (int i = 1; i <= n; i++) {
while ((j == m) || (j > 0 && p[j + 1] != s[i]))
j = nxt[j];
if (p[j + 1] == s[i])
j++;
f[i] = j;
}
}
/*
简化写法 两个字符串拼接起来用#分割
int n = strlen(s+1), m = strlen(p+1);
p[m + 1] = '#';
for (int i = 1, j = m + 2; i <= n; i++, j++)
p[j] = s[i];
int j = 0;
nxt[1] = 0;
for (int i = 2; i <= n + m + 1; i++) {
while (j && p[i] != p[j + 1])
j = nxt[j];
if (p[i] == p[j + 1])
j++;
nxt[i] = j;
}
*/
exkmp
代码实现
时间复杂度\(O(n)\)
void exkmp() {
int L = 1, R = 0;
z[1] = 0;
for (int i = 2; i <= n; i++) {
if (l > R) z[i] = 0;
else {
int k = i - L + 1;
z[i] = min(z[k], R - i + 1);
}
while (i + z[i] <= n && s[z[i] + 1] == s[i + z[i]])
z++;
if (i + z[i] - 1 > R)
L = i, R = i + z[i] - 1;
}
}
快速幂
代码实现
时间复杂度\(O(logn)\)
long long qp(long long a, int n) {
long long ans = 1;
for (; n; n >>= 1) {
if (n & 1) ans *= a, ans %= p;
a *= a, a %= p;
}
}
快速乘
代码实现
用于快速计算 \(a \times b \pmod p\)
当 \(0 \le a,b\le10^9,1\le P\le10^9\)时,可以直接计算
当 \(0 \le a,b\le10^{18},1\le P\le10^9\)时,可以\((a\%p \times b\%p)\%p\)进行计算
当 \(0 \le a,b\le10^{18},1\le P\le10^{18}\)时,需要用到快速乘
时间复杂度\(O(logn)\)
long long qm(long long a, long long b, long long p) {
long long ans = 0;
a %= p;//重要
for (; b; b >>= 1) {
if (b & 1) ans += a, ans %= p;
a += a;
a %= p;
}
return ans;
}
矩阵乘法
代码实现
设A是一个n行m列的矩阵,B是一个m行k列的矩阵,矩阵\(C=A\times B\)
计算方式:\(C_{i,j}=\sum_{k=1}^mA_{i,j}B_{k,j}\)
A的列数等于B的行数才可以进行矩阵乘法
const int K = 200, P = 1e9 + 7;
int n;
long long a[N + 1][N + 1], f[N + 1];
void aa() {
long long w[N + 1][N + 1];
memset(w, 0, sizeof(w));
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= n; k++)
w[i][j] += a[i][k] * a[k][j], w[i][j] %= p;
memcpy(a, w, sizeof(a));
}
void fa() {
long long w[N + 1];
memset(w, 0, sizeof(w));
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
w[i] += f[i] * a[j][i], w[i] %= p;
memcpy(f, w, sizeof(f));
}
void matrixpow(int k) {
for (; k; k /= 2) {
if (k & 1) fa();
aa();
}
}
标签:le10,le,int,复杂度,long,算法,ans,一些,杂项 来源: https://www.cnblogs.com/guyuLihua/p/16573771.html