【Java】基于线程池的独立任务并发执行器
作者:互联网
目的:
对于多个独立的任务,可以以并发的方式执行任务,以提高 CPU 利用率,提高处理效率。
思路
在一个线程池中,开启指定数量的线程,每个线程从任务队列中获取任务执行。
执行的过程中,判断当前线程是否在执行任务的状态,如果没有执行任务,取一条任务执行,如果正在执行,则跳过,下轮再判断。
在所有任务执行完后,关闭线程池。
需要注意的是数据结构的选择,须选择并发类的数据结构,不然可能出现阻塞,死锁等情况。
(具体逻辑参考源码)
示例
/**
* 并发执行器示例
*/
public class ConcurrentExecutorTest {
/**
* 测试
*/
public static void main(String[] args) {
for (int i = 0; i < 100; i++) {
test();
}
}
private static void test() {
Map<String, String> paramMap = new LinkedHashMap<>();
for (int i = 0; i < 10; i++) {
paramMap.put("key:" + i, "value:" + i);
}
final ConcurrentExecutor<String, String, Integer> executor = new ConcurrentExecutor<>(5, paramMap,
(k, v) -> {
ThreadUtil.sleep(10);
System.out.println(Thread.currentThread().getName() + "-" + v);
final int abs = Math.abs(Objects.hash(v));
if (abs % 3 == 0) {
int i = 1 / 0;
}
return abs;
});
executor.execute();
System.out.println("success result: " + executor.getSuccessResultMap());
System.out.println("error result: " + executor.getErrorResultMap());
}
}
测试结果
pool-1-thread-1-value:0
pool-1-thread-2-value:1
pool-1-thread-4-value:3
pool-1-thread-3-value:2
pool-1-thread-3-value:8
pool-1-thread-1-value:5
pool-1-thread-5-value:4
pool-1-thread-2-value:6
pool-1-thread-4-value:7
pool-1-thread-3-value:9
success result: {key:2=231604360, key:0=231604358, key:6=231604364, key:5=231604363, key:3=231604361, key:9=231604367, key:8=231604366}
error result: {key:1=java.lang.ArithmeticException: / by zero, key:4=java.lang.ArithmeticException: / by zero, key:7=java.lang.ArithmeticException: / by zero}
源码
import cn.hutool.core.collection.CollUtil;
import cn.hutool.core.collection.ConcurrentHashSet;
import cn.hutool.core.lang.Assert;
import cn.hutool.core.thread.ThreadUtil;
import cn.hutool.core.util.BooleanUtil;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ExecutorService;
import java.util.function.BiFunction;
/**
* 并发执行器
* <p>
* 适用场景:每个任务是独立的,不耦合的
*
* @author lilou
* @since 2022/6/9 9:05
*/
public class ConcurrentExecutor<K, V, R> {
/**
* 任务参数映射(K:key的类型,V:值的类型)
*/
private final Map<K, V> paramMap;
/**
* 成功的任务结果映射(R:结果类型)
*/
private final Map<K, R> successResultMap;
/**
* 失败的任务结果映射
*/
private final Map<K, Throwable> errorResultMap;
/**
* 当前运行中的key集合
*/
private final Set<K> runningKeySet;
/**
* 候选任务key队列
*/
private final Queue<K> candidateKeyQueue;
/**
* 同时运行的最大线程数量
*/
private final int maxThreadNum;
/**
* 执行器
*/
private final ExecutorService executorService;
/**
* 具体任务策略
*/
private final BiFunction<K, V, R> biFunction;
/**
* 当前index线程的运行状态,可依据此状态,判断是否立刻从任务参数中获取任务执行
*/
private final Map<Integer, Boolean> currentIndexThreadRunningStatusMap;
public ConcurrentExecutor(int maxThreadNum, Map<K, V> paramMap, BiFunction<K, V, R> biFunction) {
Assert.notNull(paramMap, "paramMap不可为空");
Assert.isTrue(maxThreadNum > 0, "maxThreadNum不可小于1");
final int paramSize = paramMap.size();
this.maxThreadNum = Math.min(maxThreadNum, paramSize);
// tips: 须转换成同步类的map数据结构,如果错误地使用 this.paramMap = paramMap; 且外部使用了HashMap 或 LinkedHashMap,多测试几遍会发现,偶尔会陷入了阻塞
this.paramMap = Collections.synchronizedMap(paramMap);
this.candidateKeyQueue = new ConcurrentLinkedQueue<>(paramMap.keySet());
this.runningKeySet = new ConcurrentHashSet<>(paramSize);
this.biFunction = biFunction;
this.executorService = ThreadUtil.newExecutor(this.maxThreadNum, this.maxThreadNum, Integer.MAX_VALUE);
this.currentIndexThreadRunningStatusMap = new ConcurrentHashMap<>(this.maxThreadNum);
this.successResultMap = new ConcurrentHashMap<>(this.paramMap.size());
this.errorResultMap = new ConcurrentHashMap<>();
}
public void execute() {
while (CollUtil.isNotEmpty(paramMap)) {
// 最多同时有 maxRunningThreadNumber 同时消费 taskMap 中的数据
for (int i = 0; i < this.maxThreadNum; i++) {
int currentIndex = i;
// 当前线程上次还未执行完,暂时跳过
final Boolean isRunning = currentIndexThreadRunningStatusMap.getOrDefault(currentIndex, false);
if (BooleanUtil.isTrue(isRunning)) {
continue;
}
// 每个线程只处理和自己相关的
final K candidateKey = pickCandidateKey();
// 当前没有对应key的任务
if (Objects.isNull(candidateKey)) {
continue;
}
// 在线程池中运行任务
executorService.submit(() -> {
try {
currentIndexThreadRunningStatusMap.put(currentIndex, true);
final V data = paramMap.get(candidateKey);
// 开始执行任务
final R result = biFunction.apply(candidateKey, data);
// 存入正常结果
successResultMap.put(candidateKey, result);
} catch (Exception e) {
// 存入异常结果
errorResultMap.put(candidateKey, e);
} finally {
paramMap.remove(candidateKey);
candidateKeyQueue.remove(candidateKey);
currentIndexThreadRunningStatusMap.remove(currentIndex);
}
});
}
}
executorService.shutdown();
}
/**
* 从候选任务key队列中选择一个任务key
*/
private K pickCandidateKey() {
for (K candidateKey : candidateKeyQueue) {
if (!runningKeySet.contains(candidateKey)) {
runningKeySet.add(candidateKey);
return candidateKey;
}
}
return null;
}
public Map<K, R> getSuccessResultMap() {
return successResultMap;
}
public Map<K, Throwable> getErrorResultMap() {
return errorResultMap;
}
}
标签:执行器,Java,thread,private,candidateKey,线程,key,paramMap,final 来源: https://www.cnblogs.com/lyloou/p/16365529.html