PYTHON中的CONCURRENT.FUTURES模块
作者:互联网
一 : 概述
concurrent.futures模块提供了高度封装的异步调用接口
ThreadPoolExecutor:线程池,提供异步调用
ProcessPoolExecutor: 进程池,提供异步调用
Both implement the same interface, which is defined by the abstract Executor class.
二 : 基本方法
submit(fn, *args, **kwargs) 异步提交任务
map(func, *iterables, timeout=None, chunksize=1) 取代for循环submit的操作
shutdown(wait=True) 相当于进程池的pool.close()+pool.join()操作, wait=True,等待池内所有任务执行完毕回收完资源后才继续 , wait=False,立即返回,并不会等待池内的任务执行完毕 , 但不管wait参数为何值,整个程序都会等到所有任务执行完毕 , submit和map必须在shutdown之前.
result(timeout=None) 取得结果
add_done_callback(fn) 添加回调函数
1 #介绍 2 The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned. 3 4 class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None) 5 An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, it will default to the number of processors on the machine. If max_workers is lower or equal to 0, then a ValueError will be raised. 6 7 8 #用法 9 from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor 10 11 import os,time,random 12 def task(n): 13 print('%s is runing' %os.getpid()) 14 time.sleep(random.randint(1,3)) 15 return n**2 16 17 if __name__ == '__main__': 18 19 executor=ProcessPoolExecutor(max_workers=3) 20 21 futures=[] 22 for i in range(11): 23 future=executor.submit(task,i) 24 futures.append(future) 25 executor.shutdown(True) 26 print('+++>') 27 for future in futures: 28 print(future.result()) 29 30 ProcessPoolExecutor
#介绍 ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously. class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='') An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously. Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor. New in version 3.6: The thread_name_prefix argument was added to allow users to control the threading.Thread names for worker threads created by the pool for easier debugging. #用法 与ProcessPoolExecutor相同 ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import os,time,random def task(n): print('%s is runing' %os.getpid()) time.sleep(random.randint(1,3)) return n**2 if __name__ == '__main__': executor=ThreadPoolExecutor(max_workers=3) # for i in range(11): # future=executor.submit(task,i) executor.map(task,range(1,12)) #map取代了for+submit map的用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor from multiprocessing import Pool import requests import json import os def get_page(url): print('<进程%s> get %s' %(os.getpid(),url)) respone=requests.get(url) if respone.status_code == 200: return {'url':url,'text':respone.text} def parse_page(res): res=res.result() print('<进程%s> parse %s' %(os.getpid(),res['url'])) parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text'])) with open('db.txt','a') as f: f.write(parse_res) if __name__ == '__main__': urls=[ 'https://www.baidu.com', 'https://www.python.org', 'https://www.openstack.org', 'https://help.github.com/', 'http://www.sina.com.cn/' ] # p=Pool(3) # for url in urls: # p.apply_async(get_page,args=(url,),callback=pasrse_page) # p.close() # p.join() p=ProcessPoolExecutor(3) for url in urls: p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果 回调函数
转载至:https://www.cnblogs.com/DoingBe/p/9545066.html
标签:__,ProcessPoolExecutor,PYTHON,workers,FUTURES,CONCURRENT,url,import,ThreadPoolEx 来源: https://www.cnblogs.com/bbjs/p/16154372.html