编程语言
首页 > 编程语言> > 什么是机器学习回归算法?【线性回归、正规方程、梯度下降、正则化、欠拟合和过拟合、岭回归】

什么是机器学习回归算法?【线性回归、正规方程、梯度下降、正则化、欠拟合和过拟合、岭回归】

作者:互联网

1 、线性回归

1.1 线性回归应用场景

1.2 什么是线性回归

1.2.1定义与公式

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

那么怎么理解呢?我们来看几个例子

上面两个例子,我们看到特征值与目标值之间建立的一个关系,这个可以理解为回归方程

1.3 线性回归的损失和优化原理

假设刚才的房子例子,真实的数据之间存在这样的关系

真实关系:真实房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率

那么现在呢,我们随意指定一个关系(猜测)

随机指定关系:预测房子价格 = 0.25×中心区域的距离 + 0.14×城市一氧化氮浓度 + 0.42×自住房平均房价 + 0.34×城镇犯罪率

这两个关系肯定是存在误差的,那么我们怎么表示这个误差并且衡量优化呢?

1.3.1 损失函数

最小二乘法

如何去减少这个损失,使我们预测的更加准确些?既然存在了这个损失,我们一直说机器学习有自动学习的功能,在线性回归这里更是能够体现。这里可以通过一些优化方法去优化(其实是数学当中的求导功能)回归的总损失!!!

1.3.2 优化算法---正规方程

如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)

理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果

缺点:当特征过多过复杂时,求解速度太慢并且得不到结果

1.3.2 优化算法---梯度下降

理解:α为学习速率,需要手动指定(超参数),α旁边的整体表示方向

沿着这个函数下降的方向找,最后就能找到山谷的最低点,然后更新W值

使用:面对训练数据规模十分庞大的任务 ,能够找到较好的结果

1.4 线性回归API

1.5 回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

注:y^i为预测值,¯y为真实值

1.6 案例(正规方程的优化方法对波士顿房价进行预测)

def linear1():
    """
    正规方程的优化方法对波士顿房价进行预测
    :return:
    """
    # 1)获取数据
    boston = load_boston()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)

    # 3)标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)预估器
    """
    通过正规方程优化
    fit_intercept:是否计算偏置
    LinearRegression.coef_:回归系数
    LinearRegression.intercept_:偏置
    """
    estimator = LinearRegression()
    estimator.fit(x_train, y_train)

    # 5)得出模型
    print("正规方程-权重系数为:\n", estimator.coef_)
    print("正规方程-偏置为:\n", estimator.intercept_)

    # 6)模型评估
    y_predict = estimator.predict(x_test)
    print("预测房价:\n", y_predict)
    error = mean_squared_error(y_test, y_predict)
    print("正规方程-均方误差为:\n", error)

    return None

1.7 案例(梯度下降的优化方法对波士顿房价进行预测)

def linear2():
    """
    梯度下降的优化方法对波士顿房价进行预测
    :return:
    """
    # 1)获取数据
    boston = load_boston()
    print("特征数量:\n", boston.data.shape)

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)

    # 3)标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)预估器
    """
    sklearn.linear_model.SGDRegressor(loss="squared_loss", fit_intercept=True, learning_rate ='invscaling', eta0=0.01)
    学习率填充
    'constant': eta = eta0
    'optimal': eta = 1.0 / (alpha * (t + t0)) [default]
    'invscaling': eta = eta0 / pow(t, power_t)
    power_t=0.25:存在父类当中
    对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
    """
    estimator = SGDRegressor(learning_rate="constant", eta0=0.01, max_iter=10000, penalty="l1")
    estimator.fit(x_train, y_train)

    # 5)得出模型
    print("梯度下降-权重系数为:\n", estimator.coef_)
    print("梯度下降-偏置为:\n", estimator.intercept_)

    # 6)模型评估
    y_predict = estimator.predict(x_test)
    print("预测房价:\n", y_predict)
    error = mean_squared_error(y_test, y_predict)
    print("梯度下降-均方误差为:\n", error)

    return None

2、欠拟合与过拟合

2.1 什么是过拟合与欠拟合

2.1.1 定义

2.1.2 原因和解决办法

2.2 正则化类别

3、带有L2正则化的线性回归-岭回归

3.1 岭回归API

Ridge方法相当于SGDRegressor(penalty='l2', loss="squared_loss")

只不过SGDRegressor实现了一个普通的随机梯度下降学习,推荐使用Ridge(实现了SAG随机梯度下降)


注:参考了黑马程序员相关资料。

标签:fit,intercept,回归,正则,train,拟合,test
来源: https://www.cnblogs.com/rainbow-1/p/16104665.html