kNN算法
作者:互联网
一、电影类别分类:初识kNN
k近邻法(k-nearest neighbor, k-NN)是1967
年由Cover T
和Hart P
提出的一种基本分类与回归方法。
它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。
输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。
一般来说,我们只选择样本数据集中前k
个最相似的数据,这就是k-近邻算法中k的出处,通常k
是不大于20
的整数。
最后,选择k
个最相似数据中出现次数最多的分类,作为新数据的分类。
举个简单的例子,我们可以使用k-近邻算法分类一个电影是爱情片还是动作片。
表1.1
上表1.1,就是我们已有的数据集合,也就是训练样本集。
这个数据集有两个特征,即打斗镜头数和接吻镜头数。
除此之外,我们也知道每个电影的所属类型,即分类标签。用肉眼粗略地观察,接吻镜头多的,是爱情片。打斗镜头多的,是动作片。
以我们多年的看片经验,这个分类还算合理。如果现在给我一部电影,你告诉我这个电影打斗镜头数和接吻镜头数。不告诉我这个电影类型&
标签:kNN,镜头,样本,标签,分类,电影,算法,数据 来源: https://blog.csdn.net/m0_55389447/article/details/122737118