Java机试题:请计算n*m的棋盘格子,从棋盘左上角出发沿着边缘线从左上角走到右下角,总共有多少种走法。【动态规划(递推、递归、迭代)】
作者:互联网
描述
请计算n*m的棋盘格子(n为横向的格子数,m为竖向的格子数)从棋盘左上角出发沿着边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往上走。 注:沿棋盘格之间的边缘线行走思路
参考链接:https://www.nowcoder.com/questionTerminal/e2a22f0305eb4f2f9846e7d644dba09b 用递归来做,将右下角看做原点(0, 0),左上角看做坐标(m, n): 从(m, n)—>(0, 0)就分两步走: 往右走一步:f(m, n - 1)—>(0, 0) 加上下走一步:f(m - 1, n)—>(0, 0)则有递归式: f(m, n) = f(m, n - 1) + f(m - 1, n) 但凡是触碰到边界,也就是说f(x, 0)或者f(0,x)都只有一条直路可走了,则结束循环条件如下: m == 0 || n == 0 , return 1;import java.util.*; public class Main { public static void main(String[] args){ Scanner sc = new Scanner(System.in); while(sc.hasNextLine()){ String[] nums = sc.nextLine().split(" "); int n = Integer.valueOf(nums[0]); int m = Integer.valueOf(nums[1]); int sum = getNums(n,m); System.out.println(sum) ; } }
// 动态规划,递归函数 public static int getNums(int n,int m) {
// 递归函数结束条件 if( n ==0 || m == 0){ return 1; } else {
// n,m的走法,等于 n-1,m与n,m -1相加 return getNums(n - 1, m) + getNums(n, m -1); } } }
标签:Java,格子,int,return,getNums,左上角,棋盘 来源: https://www.cnblogs.com/duiyuedangge/p/15757249.html