编程语言
首页 > 编程语言> > Java 压缩20M文件从30秒到1秒的优化过程,真不相信?

Java 压缩20M文件从30秒到1秒的优化过程,真不相信?

作者:互联网

有一个需求需要将前端传过来的10张照片,然后后端进行处理以后压缩成一个压缩包通过网络流传输出去。

之前没有接触过用Java压缩文件的,所以就直接上网找了一个例子改了一下用了,改完以后也能使用,

但是随着前端所传图片的大小越来越大的时候,耗费的时间也在急剧增加,最后测了一下压缩20M的文件竟然需要30秒的时间。

压缩文件的代码如下。

public static void zipFileNoBuffer() {
    File zipFile = new File(ZIP_FILE);
    try (ZipOutputStream zipOut = new ZipOutputStream(new FileOutputStream(zipFile))) {
        //开始时间
        long beginTime = System.currentTimeMillis();

        for (int i = 0; i < 10; i++) {
            try (InputStream input = new FileInputStream(JPG_FILE)) {
                zipOut.putNextEntry(new ZipEntry(FILE_NAME + i));
                int temp = 0;
                while ((temp = input.read()) != -1) {
                    zipOut.write(temp);
                }
            }
        }
        printInfo(beginTime);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

这里找了一张2M大小的图片,并且循环十次进行测试。打印的结果如下,时间大概是30秒。

fileSize:20M
consum time:29599

第一次优化过程-从30秒到2秒

进行优化首先想到的是利用缓冲区 BufferInputStream

FileInputStreamread()方法每次只读取一个字节。

源码中也有说明。

/**
 * Reads a byte of data from this input stream. This method blocks
 * if no input is yet available.
 *
 * @return     the next byte of data, or <code>-1</code> if the end of the
 *             file is reached.
 * @exception  IOException  if an I/O error occurs.
 */
public native int read() throws IOException;

这是一个调用本地方法与原生操作系统进行交互,从磁盘中读取数据。

每读取一个字节的数据就调用一次本地方法与操作系统交互,是非常耗时的。

例如我们现在有30000个字节的数据,如果使用FileInputStream那么就需要调用30000次的本地方法来获取这些数据,

而如果使用缓冲区的话(这里假设初始的缓冲区大小足够放下30000字节的数据)那么只需要调用一次就行。

因为缓冲区在第一次调用read()方法的时候会直接从磁盘中将数据直接读取到内存中。随后再一个字节一个字节的慢慢返回。

BufferedInputStream内部封装了一个byte数组用于存放数据,默认大小是8192

优化过后的代码如下

public static void zipFileBuffer() {
    File zipFile = new File(ZIP_FILE);
    try (ZipOutputStream zipOut = new ZipOutputStream(new FileOutputStream(zipFile));
            BufferedOutputStream bufferedOutputStream = new BufferedOutputStream(zipOut)) {
        //开始时间
        long beginTime = System.currentTimeMillis();
        for (int i = 0; i < 10; i++) {
            try (BufferedInputStream bufferedInputStream = new BufferedInputStream(new FileInputStream(JPG_FILE))) {
                zipOut.putNextEntry(new ZipEntry(FILE_NAME + i));
                int temp = 0;
                while ((temp = bufferedInputStream.read()) != -1) {
                    bufferedOutputStream.write(temp);
                }
            }
        }
        printInfo(beginTime);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

输出

------Buffer
fileSize:20M
consum time:1808

可以看到相比较于第一次使用FileInputStream效率已经提升了许多了

第二次优化过程-从2秒到1秒

使用缓冲区buffer的话已经是满足了我的需求了,但是秉着学以致用的想法,就想着用NIO中知识进行优化一下。

使用Channel

为什么要用Channel呢?

因为在NIO中新出了ChannelByteBuffer

正是因为它们的结构更加符合操作系统执行I/O的方式,所以其速度相比较于传统IO而言速度有了显著的提高。

Channel就像一个包含着煤矿的矿藏,而ByteBuffer则是派送到矿藏的卡车。也就是说我们与数据的交互都是与ByteBuffer的交互。

在NIO中能够产生FileChannel的有三个类。

分别是FileInputStreamFileOutputStream、以及既能读又能写的RandomAccessFile

源码如下

public static void zipFileChannel() {
    //开始时间
    long beginTime = System.currentTimeMillis();
    File zipFile = new File(ZIP_FILE);
    try (ZipOutputStream zipOut = new ZipOutputStream(new FileOutputStream(zipFile));
            WritableByteChannel writableByteChannel = Channels.newChannel(zipOut)) {
        for (int i = 0; i < 10; i++) {
            try (FileChannel fileChannel = new FileInputStream(JPG_FILE).getChannel()) {
                zipOut.putNextEntry(new ZipEntry(i + SUFFIX_FILE));
                fileChannel.transferTo(0, FILE_SIZE, writableByteChannel);
            }
        }
        printInfo(beginTime);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

我们可以看到这里并没有使用ByteBuffer进行数据传输,而是使用了transferTo的方法。

这个方法是将两个通道进行直连。

This method is potentially much more efficient than a simple loop
* that reads from this channel and writes to the target channel.  Many
* operating systems can transfer bytes directly from the filesystem cache
* to the target channel without actually copying them.

这是源码上的描述文字,大概意思就是使用transferTo的效率比循环一个Channel读取出来然后再循环写入另一个Channel好。

操作系统能够直接传输字节从文件系统缓存到目标的Channel中,而不需要实际的copy阶段。

copy阶段就是从内核空间转到用户空间的一个过程

可以看到速度相比较使用缓冲区已经有了一些的提高。

------Channel
fileSize:20M
consum time:1416

内核空间和用户空间

那么为什么从内核空间转向用户空间这段过程会慢呢?

首先我们需了解的是什么是内核空间和用户空间。

在常用的操作系统中为了保护系统中的核心资源,于是将系统设计为四个区域,越往里权限越大,所以Ring0被称之为内核空间,用来访问一些关键性的资源。

Ring3被称之为用户空间。

 

 用户态、内核态:线程处于内核空间称之为内核态,线程处于用户空间属于用户态

那么我们如果此时应用程序(应用程序是都属于用户态的)需要访问核心资源怎么办呢?

那就需要调用内核中所暴露出的接口用以调用,称之为系统调用 。

例如此时我们应用程序需要访问磁盘上的文件。此时应用程序就会调用系统调用的接口open方法,然后内核去访问磁盘中的文件,将文件内容返回给应用程序。

大致的流程如下

直接缓冲区和非直接缓冲区

既然我们要读取一个磁盘的文件,要废这么大的周折。

有没有什么简单的方法能够使我们的应用直接操作磁盘文件,不需要内核进行中转呢?有,那就是建立直接缓冲区了。

 

 

 既然直接缓冲区那么快,我们为什么不都用直接缓冲区呢?

其实直接缓冲区有以下的缺点。直接缓冲区的缺点:

  1. 不安全
  2. 消耗更多,因为它不是在JVM中直接开辟空间。这部分内存的回收只能依赖于垃圾回收机制,垃圾什么时候回收不受我们控制。
  3. 数据写入物理内存缓冲区中,程序就丧失了对这些数据的管理,即什么时候这些数据被最终写入从磁盘只能由操作系统来决定,应用程序无法再干涉。

综上所述,所以我们使用transferTo方法就是直接开辟了一段直接缓冲区。所以性能相比而言提高了许多

使用内存映射文件

NIO中新出的另一个特性就是内存映射文件,内存映射文件为什么速度快呢?

其实原因和上面所讲的一样,也是在内存中开辟了一段直接缓冲区。与数据直接作交互。

源码如下

 

//Version 4 使用Map映射文件
public static void zipFileMap() {
    //开始时间
    long beginTime = System.currentTimeMillis();
    File zipFile = new File(ZIP_FILE);
    try (ZipOutputStream zipOut = new ZipOutputStream(new FileOutputStream(zipFile));
            WritableByteChannel writableByteChannel = Channels.newChannel(zipOut)) {
        for (int i = 0; i < 10; i++) {

            zipOut.putNextEntry(new ZipEntry(i + SUFFIX_FILE));

            //内存中的映射文件
            MappedByteBuffer mappedByteBuffer = new RandomAccessFile(JPG_FILE_PATH, "r").getChannel()
                    .map(FileChannel.MapMode.READ_ONLY, 0, FILE_SIZE);

            writableByteChannel.write(mappedByteBuffer);
        }
        printInfo(beginTime);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

打印如下

---------Map
fileSize:20M
consum time:1305

可以看到速度和使用Channel的速度差不多的

使用Pipe

Java NIO 管道是2个线程之间的单向数据连接。Pipe有一个source通道和一个sink通道。

其中source通道用于读取数据,sink通道用于写入数据。

可以看到源码中的介绍,大概意思就是写入线程会阻塞至有读线程从通道中读取数据。如果没有数据可读,读线程也会阻塞至写线程写入数据。直至通道关闭。

 Whether or not a thread writing bytes to a pipe will block until another
 thread reads those bytes

 

 我想要的效果是这样的。源码如下

//Version 5 使用Pip
public static void zipFilePip() {

    long beginTime = System.currentTimeMillis();
    try(WritableByteChannel out = Channels.newChannel(new FileOutputStream(ZIP_FILE))) {
        Pipe pipe = Pipe.open();
        //异步任务
        CompletableFuture.runAsync(()->runTask(pipe));

        //获取读通道
        ReadableByteChannel readableByteChannel = pipe.source();
        ByteBuffer buffer = ByteBuffer.allocate(((int) FILE_SIZE)*10);
        while (readableByteChannel.read(buffer)>= 0) {
            buffer.flip();
            out.write(buffer);
            buffer.clear();
        }
    }catch (Exception e){
        e.printStackTrace();
    }
    printInfo(beginTime);

}

//异步任务
public static void runTask(Pipe pipe) {

    try(ZipOutputStream zos = new ZipOutputStream(Channels.newOutputStream(pipe.sink()));
            WritableByteChannel out = Channels.newChannel(zos)) {
        System.out.println("Begin");
        for (int i = 0; i < 10; i++) {
            zos.putNextEntry(new ZipEntry(i+SUFFIX_FILE));

            FileChannel jpgChannel = new FileInputStream(new File(JPG_FILE_PATH)).getChannel();

            jpgChannel.transferTo(0, FILE_SIZE, out);

            jpgChannel.close();
        }
    }catch (Exception e){
        e.printStackTrace();
    }
}

参考

标签:ZipOutputStream,Java,30,zipOut,内核,FILE,缓冲区,new,20M
来源: https://www.cnblogs.com/Vincent-yuan/p/15659562.html