编程语言
首页 > 编程语言> > 4.决策树算法api

4.决策树算法api

作者:互联网

1决策树算法api

案例:泰坦尼克号乘客生存预测

1 泰坦尼克号数据

在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。这里使用的数据集是由各种研究人员开始的。其中包括许多研究人员创建的旅客名单,由Michael A. Findlay编辑。我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,船和性别。

数据:http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt

 

 

经过观察数据得到:

2 步骤分析

3 代码过程

1:导入模块

import pandas as pd
import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz

2:获取数据

# 1、获取数据
titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

3:基本数据处理

2.1 确定特征值,目标值
x = titan[["pclass", "age", "sex"]]
y = titan["survived"]
2.2 缺失值处理
# 缺失值需要处理,将特征当中有类别的这些特征进行字典特征抽取
x['age'].fillna(x['age'].mean(), inplace=True)
2.3 数据集划分
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)

4:特征工程(字典特征抽取)

#特征中出现类别符号,需要进行one-hot编码处理(DictVectorizer)

#x.to_dict(orient="records") 需要将数组特征转换成字典数据

# 对于x转换成字典数据x.to_dict(orient="records")
# [{"pclass": "1st", "age": 29.00, "sex": "female"}, {}]

transfer = DictVectorizer(sparse=False)

x_train = transfer.fit_transform(x_train.to_dict(orient="records"))
x_test = transfer.fit_transform(x_test.to_dict(orient="records"))

5:决策树模型训练和模型评估

决策树API当中,如果没有指定max_depth那么会根据信息熵的条件直到最终结束。这里我们可以指定树的深度来进行限制树的大小

# 4.机器学习(决策树)
estimator = DecisionTreeClassifier(criterion="entropy", max_depth=5)
estimator.fit(x_train, y_train)

# 5.模型评估
estimator.score(x_test, y_test)

estimator.predict(x_test)

 

标签:api,样本数,算法,train,test,数据,特征,决策树
来源: https://www.cnblogs.com/Live-up-to-your-youth/p/15518699.html