Python+OpenCV数字图像处理,彩色空间变换(HSI和RGB空间)
作者:互联网
Python+OpenCV数字图像处理,彩色空间变换(HSI和RGB空间)
前言
新人轻点喷~
在网上看到好多基本都是循环写的,逐个像素操作,比较慢,这里尝试用numpy库的where函数写了一下,速度提升了好多(呃~~~~~)
RGB到HSI空间及HSI到RGB空间的原理和公式书上都有,就不列出来了(我看的是刚雷萨斯第四版)
直接上代码
代码
# -*- coding:utf-8 -*-
"""
作者:YJH
日期:2021年10月28日
"""
import matplotlib.pyplot as plt
import cv2 as cv
import numpy as np
# 显示汉字用
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 定义显示一张图片函数
def imshow(image):
if image.ndim == 2:
plt.imshow(image, cmap='gray') # 指定为灰度图像
else:
plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB))
# 定义坐标数字字体及大小
def label_def():
plt.xticks(fontproperties='Times New Roman', size=8)
plt.yticks(fontproperties='Times New Roman', size=8)
plt.axis('off') # 关坐标,可选
# 读取图片
img_orig = cv.imread('strawberries_coffee_full_color.tif', 1) # 读取彩色图片
# RGB到HSI的变换
def rgb2hsi(image):
b, g, r = cv.split(image) # 读取通道
r = r / 255.0 # 归一化
g = g / 255.0
b = b / 255.0
eps = 1e-6 # 防止除零
img_i = (r + g + b) / 3 # I分量
img_h = np.zeros(r.shape, dtype=np.float32)
img_s = np.zeros(r.shape, dtype=np.float32)
min_rgb = np.zeros(r.shape, dtype=np.float32)
# 获取RGB中最小值
min_rgb = np.where((r <= g) & (r <= b), r, min_rgb)
min_rgb = np.where((g <= r) & (g <= b), g, min_rgb)
min_rgb = np.where((b <= g) & (b <= r), b, min_rgb)
img_s = 1 - 3*min_rgb/(r+g+b+eps) # S分量
num = ((r-g) + (r-b))/2
den = np.sqrt((r-g)**2 + (r-b)*(g-b))
theta = np.arccos(num/(den+eps))
img_h = np.where((b-g) > 0, 2*np.pi - theta, theta) # H分量
img_h = img_h/(2*np.pi) # 归一化
temp_s = img_s - np.min(img_s)
temp_i = img_i - np.min(img_i)
img_s = temp_s/np.max(temp_s)
img_i = temp_i/np.max(temp_i)
image_hsi = cv.merge([img_h, img_s, img_i])
return img_h, img_s, img_i, image_hsi
# HSI到RGB的变换
def hsi2rgb(image_hsi):
eps = 1e-6 # 防止除零
img_h, img_s, img_i = cv.split(image_hsi)
image_out = np.zeros((img_h.shape[0], img_h.shape[1], 3))
img_h = img_h*2*np.pi
img_r = np.zeros(img_h.shape, dtype=np.float32)
img_g = np.zeros(img_h.shape, dtype=np.float32)
img_b = np.zeros(img_h.shape, dtype=np.float32)
# 扇区1
img_b = np.where((img_h >= 0) & (img_h < 2 * np.pi / 3), img_i * (1 - img_s), img_b)
img_r = np.where((img_h >= 0) & (img_h < 2 * np.pi / 3),
img_i * (1 + img_s * np.cos(img_h) / (np.cos(np.pi/3 - img_h))), img_r)
img_g = np.where((img_h >= 0) & (img_h < 2 * np.pi / 3), 3 * img_i - (img_r + img_b), img_g)
# 扇区2
img_r = np.where((img_h >= 2*np.pi/3) & (img_h < 4*np.pi/3), img_i * (1 - img_s), img_r)
img_g = np.where((img_h >= 2*np.pi/3) & (img_h < 4*np.pi/3),
img_i * (1 + img_s * np.cos(img_h) / (np.cos(np.pi/3 - img_h))), img_g)
img_b = np.where((img_h >= 2*np.pi/3) & (img_h < 4*np.pi/3), 3 * img_i - (img_r + img_g), img_b)
# 扇区3
img_g = np.where((img_h >= 4*np.pi/3) & (img_h <= 2*np.pi), img_i * (1 - img_s), img_g)
img_b = np.where((img_h >= 4*np.pi/3) & (img_h <= 2*np.pi),
img_i * (1 + img_s * np.cos(img_h) / (np.cos(np.pi/3 - img_h))), img_b)
img_r = np.where((img_h >= 4*np.pi/3) & (img_h <= 2*np.pi), 3 * img_i - (img_b + img_g), img_r)
temp_r = img_r - np.min(img_r)
img_r = temp_r/np.max(temp_r)
temp_g = img_g - np.min(img_g)
img_g = temp_g/np.max(temp_g)
temp_b = img_b - np.min(img_b)
img_b = temp_b/np.max(temp_b)
image_out = cv.merge((img_b, img_g, img_r)) # 按RGB合并,后面不用转换通道
print(image_out.shape)
return image_out
if __name__ == '__main__': # 运行当前函数
h, s, i, hsi = rgb2hsi(img_orig) # RGB到HSI的变换
img_revise = np.float32(hsi2rgb(hsi)) # HSI复原到RGB
# h, s, i = cv.split(cv.cvtColor(img_orig, cv.COLOR_BGR2HSV)) # 自带库函数HSV模型
im_b, im_g, im_r = cv.split(img_orig) # 获取RGB通道数据
plt.subplot(241), plt.imshow(cv.cvtColor(img_orig, cv.COLOR_BGR2RGB)), plt.title('原始图'), label_def()
plt.subplot(242), plt.imshow(im_r, 'gray'), plt.title('R'), label_def()
plt.subplot(243), plt.imshow(im_g, 'gray'), plt.title('G'), label_def()
plt.subplot(244), plt.imshow(im_b, 'gray'), plt.title('B'), label_def()
plt.subplot(245), plt.imshow(hsi), plt.title('HSI图'), label_def()
plt.subplot(246), plt.imshow(h, 'gray'), plt.title('H(色调)'), label_def()
plt.subplot(247), plt.imshow(s, 'gray'), plt.title('S(饱和度)'), label_def()
plt.subplot(248), plt.imshow(i, 'gray'), plt.title('I(亮度)'), label_def()
plt.show()
plt.subplot(121), plt.imshow(cv.cvtColor(img_orig, cv.COLOR_BGR2RGB)), plt.title('原RGB'), label_def()
plt.subplot(122), plt.imshow(cv.cvtColor(img_orig, cv.COLOR_BGR2RGB)), plt.title('HSI重建RGB'), label_def()
plt.show()
运行结果
欢迎大家批评指正~~~
标签:img,Python,数字图像处理,HSI,shape,np,pi,where,image 来源: https://blog.csdn.net/qq_44926189/article/details/121131241