编程语言
首页 > 编程语言> > 5 K-近邻算法实现鸢尾花种类预测

5 K-近邻算法实现鸢尾花种类预测

作者:互联网

1 再识K-近邻算法API

2 案例:鸢尾花种类预测

2.1 数据集介绍

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。关于数据集的具体介绍:

 

 

2.2 步骤分析

 

2.3 代码过程

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
# 1.获取数据集
iris = load_iris()

# 2.数据基本处理
# x_train,x_test,y_train,y_test为训练集特征值、测试集特征值、训练集目标值、测试集目标值
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
# 3、特征工程:标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
# 4、机器学习(模型训练)
estimator = KNeighborsClassifier(n_neighbors=9)
estimator.fit(x_train, y_train)
# 5、模型评估
# 方法1:比对真实值和预测值
y_predict = estimator.predict(x_test)
print("预测结果为:\n", y_predict)
print("比对真实值和预测值:\n", y_predict == y_test)
# 方法2:直接计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

 

标签:neighbors,kd,近邻,tree,算法,train,test,鸢尾花,sklearn
来源: https://www.cnblogs.com/Live-up-to-your-youth/p/15502371.html