迪克斯特拉算法
作者:互联网
参考:算法图解
# 在未处理的节点中找到开销最小的节点
def find_lowest_cost_node(costs, processed):
lowest = float("inf")
lowest_cost_node = None
for node in costs:
cost = costs[node]
if cost < lowest and node not in processed:
lowest = cost
lowest_cost_node = node
return lowest_cost_node
def func(graph, costs, parents):
processed = [] # 记录处理过的节点
node = find_lowest_cost_node(costs, processed) # 在未处理的节点中找到开销最小的节点
while node:
cost = costs[node]
neighbors = graph[node]
for n in neighbors.keys(): # 更新到达邻居节点的花费
new_cost = cost + neighbors[n]
if costs[n] > new_cost:
costs[n] = new_cost
parents[n] = node # 设置父节点
processed.append(node)
node = find_lowest_cost_node(costs, processed)
return costs["final"]
if __name__ == '__main__':
# graph dict
# 记录每个节点的到邻居的花费
graph = {"start": {}, "a": {}, "b": {}, "final": {}}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
graph["a"]["final"] = 1
graph["b"]["a"] = 3
graph["b"]["final"] = 5
# cost dict
# 记录到达每个节点的最小花费
infinity = float("inf")
costs = {"a": 6, "b": 2, "final": infinity}
# parents dict
# 记录每个节点的前一个节点(花费最少)
parents = {"a": "start", "b": "start", "final": None}
print(func(graph, costs, parents))
标签:node,lowest,graph,costs,算法,cost,斯特拉,迪克,节点 来源: https://blog.csdn.net/weixin_44495162/article/details/121078827