C++实现红黑树
作者:互联网
红黑树的应用:
- 利用key_value对,快速查找,O(logn)
- socket与客户端id之间,形成映射关系(socket, id)
- 内存分配管理
- 一整块内存,不断分配小块
- 每分配一次,就加入到红黑树
- 释放的时候,在红黑树找到相应的块,然后去释放
- 利用红黑树中序遍历是顺序的特性
- 进程的调度
- 进程处于等待状态,每个进程都有等待的时间,在未来某个时刻会运行,将这些进程利用红黑树组织起来
- 在某个时刻,找到对应时刻的节点,然后中序遍历,就可以把该节点之前的节点全部运行到。
- nginx定时器
- 极少情况下,需要key是有序的,如定时器
- 左子树 < 根 < 右子树
- 中序遍历结果是顺序的
- 极端情况下,如果顺序插入,结果就成了链表
- 为了解决这个问题,引入了红黑树
- 每个节点是红色的或黑色的
- 根节点是黑色的
- 叶子节点是黑色的
- 红色节点的两个子节点必须是黑色的
- 对每个节点,该节点到其子孙节点的所有路径上的包含相同数目的黑节点(黑高相同)
- 最短路径就是全黑
- 最长路径就是黑红相间
- 采用归纳法
- 改变三个方向,六根指针
- 插入节点的时候,原先的树是满足红黑树性质的
- 插入节点的颜色是红色更容易满足红黑树的性质
- 插入的节点是红色,且其父节点也是红色的时候,需要调整
- 叔父节点是红色
- 叔父节点是黑色,且祖父节点,父节点和插入节点不是一条直线
- 叔父节点是黑色,且祖父节点,父节点和插入节点是一条直线
- 平衡二叉树:
- 内部不是color,而是一个high记录高度,如果左右子树高度相差超过1,就需要调整。
- 什么是删除节点? y-> y是z的后继节点
- 什么是轴心节点? x是y的右子树
- 如果x是红色,把x变成黑色
- 如果x是黑色,需要进行调整
- 黑色需要调整,删除黑色破坏了黑高
#include <stdio.h> #include <stdlib.h> #include <string.h> #define RED 1 #define BLACK 2 typedef int KEY_TYPE; typedef struct _rbtree_node { unsigned char color; struct _rbtree_node *right; struct _rbtree_node *left; struct _rbtree_node *parent; KEY_TYPE key; void *value; } rbtree_node; typedef struct _rbtree { rbtree_node *root; rbtree_node *nil; } rbtree; rbtree_node *rbtree_mini(rbtree *T, rbtree_node *x) { while (x->left != T->nil) { x = x->left; } return x; } rbtree_node *rbtree_maxi(rbtree *T, rbtree_node *x) { while (x->right != T->nil) { x = x->right; } return x; } rbtree_node *rbtree_successor(rbtree *T, rbtree_node *x) { rbtree_node *y = x->parent; if (x->right != T->nil) { return rbtree_mini(T, x->right); } while ((y != T->nil) && (x == y->right)) { x = y; y = y->parent; } return y; } void rbtree_left_rotate(rbtree *T, rbtree_node *x) { rbtree_node *y = x->right; // x --> y , y --> x, right --> left, left --> right x->right = y->left; //1 1 if (y->left != T->nil) { //1 2 y->left->parent = x; } y->parent = x->parent; //1 3 if (x->parent == T->nil) { //1 4 T->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; //1 5 x->parent = y; //1 6 } void rbtree_right_rotate(rbtree *T, rbtree_node *y) { rbtree_node *x = y->left; y->left = x->right; if (x->right != T->nil) { x->right->parent = y; } x->parent = y->parent; if (y->parent == T->nil) { T->root = x; } else if (y == y->parent->right) { y->parent->right = x; } else { y->parent->left = x; } x->right = y; y->parent = x; } void rbtree_insert_fixup(rbtree *T, rbtree_node *z) { while (z->parent->color == RED) { //z ---> RED if (z->parent == z->parent->parent->left) { rbtree_node *y = z->parent->parent->right; if (y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; //z --> RED } else { if (z == z->parent->right) { z = z->parent; rbtree_left_rotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; rbtree_right_rotate(T, z->parent->parent); } }else { rbtree_node *y = z->parent->parent->left; if (y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; //z --> RED } else { if (z == z->parent->left) { z = z->parent; rbtree_right_rotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; rbtree_left_rotate(T, z->parent->parent); } } } T->root->color = BLACK; } void rbtree_insert(rbtree *T, rbtree_node *z) { rbtree_node *y = T->nil; rbtree_node *x = T->root; while (x != T->nil) { y = x; if (z->key < x->key) { x = x->left; } else if (z->key > x->key) { x = x->right; } else { //Exist return ; } } z->parent = y; if (y == T->nil) { T->root = z; } else if (z->key < y->key) { y->left = z; } else { y->right = z; } z->left = T->nil; z->right = T->nil; z->color = RED; rbtree_insert_fixup(T, z); } void rbtree_delete_fixup(rbtree *T, rbtree_node *x) { while ((x != T->root) && (x->color == BLACK)) { if (x == x->parent->left) { rbtree_node *w= x->parent->right; if (w->color == RED) { w->color = BLACK; x->parent->color = RED; rbtree_left_rotate(T, x->parent); w = x->parent->right; } if ((w->left->color == BLACK) && (w->right->color == BLACK)) { w->color = RED; x = x->parent; } else { if (w->right->color == BLACK) { w->left->color = BLACK; w->color = RED; rbtree_right_rotate(T, w); w = x->parent->right; } w->color = x->parent->color; x->parent->color = BLACK; w->right->color = BLACK; rbtree_left_rotate(T, x->parent); x = T->root; } } else { rbtree_node *w = x->parent->left; if (w->color == RED) { w->color = BLACK; x->parent->color = RED; rbtree_right_rotate(T, x->parent); w = x->parent->left; } if ((w->left->color == BLACK) && (w->right->color == BLACK)) { w->color = RED; x = x->parent; } else { if (w->left->color == BLACK) { w->right->color = BLACK; w->color = RED; rbtree_left_rotate(T, w); w = x->parent->left; } w->color = x->parent->color; x->parent->color = BLACK; w->left->color = BLACK; rbtree_right_rotate(T, x->parent); x = T->root; } } } x->color = BLACK; } rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) { rbtree_node *y = T->nil; rbtree_node *x = T->nil; if ((z->left == T->nil) || (z->right == T->nil)) { y = z; } else { y = rbtree_successor(T, z); } if (y->left != T->nil) { x = y->left; } else if (y->right != T->nil) { x = y->right; } x->parent = y->parent; if (y->parent == T->nil) { T->root = x; } else if (y == y->parent->left) { y->parent->left = x; } else { y->parent->right = x; } if (y != z) { z->key = y->key; z->value = y->value; } if (y->color == BLACK) { rbtree_delete_fixup(T, x); } return y; } rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) { rbtree_node *node = T->root; while (node != T->nil) { if (key < node->key) { node = node->left; } else if (key > node->key) { node = node->right; } else { return node; } } return T->nil; } void rbtree_traversal(rbtree *T, rbtree_node *node) { if (node != T->nil) { rbtree_traversal(T, node->left); printf("key:%d, color:%d\n", node->key, node->color); rbtree_traversal(T, node->right); } } int main() { int keyArray[20] = {24,25,13,35,23, 26,67,47,38,98, 20,19,17,49,12, 21,9,18,14,15}; rbtree *T = (rbtree *)malloc(sizeof(rbtree)); if (T == NULL) { printf("malloc failed\n"); return -1; } T->nil = (rbtree_node*)malloc(sizeof(rbtree_node)); T->nil->color = BLACK; T->root = T->nil; rbtree_node *node = T->nil; int i = 0; for (i = 0;i < 20;i ++) { node = (rbtree_node*)malloc(sizeof(rbtree_node)); node->key = keyArray[i]; node->value = NULL; rbtree_insert(T, node); } rbtree_traversal(T, T->root); printf("----------------------------------------\n"); for (i = 0;i < 20;i ++) { rbtree_node *node = rbtree_search(T, keyArray[i]); rbtree_node *cur = rbtree_delete(T, node); free(cur); rbtree_traversal(T, T->root); printf("----------------------------------------\n"); } }
标签:node,right,parent,实现,C++,color,rbtree,红黑树,left 来源: https://www.cnblogs.com/ZGreMount/p/15488553.html