使用CSF对kitti的点云数据过滤出地面点云,结合PCL使用,C++实现
作者:互联网
文章目录
前言
环境:win10+vs2019
使用CSF进行地面点云滤波,使用了PCL库读取显示点云,CSF算法使用github开源代码,自己编译生成CSF.lib。
https://github.com/jianboqi/CSF
测试所用pcd点云文件审核后发布
一、代码
#include <string>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>//PCL对各种格式的点的支持头文件
#include <pcl/io/pcd_io.h>//PCL的PCD格式文件的输入输出头文件
#include <pcl/visualization/cloud_viewer.h>//点云查看窗口头文件
#include <pcl/filters/filter.h> //滤波相关头文件
#include <pcl/filters/passthrough.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include "CSF.h"
using namespace std;
void clothSimulationFilter(const vector< csf::Point >& pc,vector<int> &groundIndexes,vector<int> & offGroundIndexes)
{
//step 1 read point cloud
CSF csf;
csf.setPointCloud(pc);// or csf.readPointsFromFile(pointClouds_filepath);
//pc can be vector< csf::Point > or PointCloud defined in point_cloud.h
//step 2 parameter settings
//Among these paramters:
//time_step interations class_threshold can remain as defualt in most cases.
csf.params.bSloopSmooth = false;
csf.params.cloth_resolution = 0.5;
csf.params.rigidness = 3;
csf.params.time_step = 0.65;
csf.params.class_threshold = 0.5;
csf.params.interations = 500;
//step 3 do filtering
//result stores the index of ground points or non-ground points in the original point cloud
csf.do_filtering(groundIndexes, offGroundIndexes);
//csf.do_filtering(groundIndexes, offGroundIndexes,true);
//if the third parameter is set as true, then a file named "cloth_nodes.txt" will be created,
//it respresents the cloth nodes.By default, it is set as false
}
void addPointCloud(const vector<int>& index_vec, const pcl::PointCloud<pcl::PointXYZI>::Ptr cloud, pcl::PointCloud<pcl::PointXYZI>::Ptr cloud_filtered)
{
auto& points = cloud_filtered->points;
const auto& pointclouds = cloud->points;
for_each(index_vec.begin(), index_vec.end(), [&](const auto& index) {
pcl::PointXYZI pc;
pc.x = pointclouds[index].x;
pc.y = pointclouds[index].y;
pc.z = pointclouds[index].z;
pc.intensity = pointclouds[index].intensity;
points.push_back(pc);
});
cloud_filtered->height = 1;
cloud_filtered->width = cloud_filtered->points.size();
}
int main()
{
string pcd_path = "E:\\kitti\\data_object_velodyne\\testing\\pcd\\000060.pcd";
// Generate pointcloud data,新建指针cloud存放点云
pcl::PointCloud<pcl::PointXYZI>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZI>);
if (pcl::io::loadPCDFile<pcl::PointXYZI>(pcd_path, *cloud) == -1)//打开点云文件。
{
PCL_ERROR("Couldn't read that pcd file\n");
return(-1);
}
vector<csf::Point> pc;
const auto& pointclouds = cloud->points;
pc.resize(cloud->size());
transform(pointclouds.begin(), pointclouds.end(), pc.begin(), [&](const auto& p)->csf::Point {
csf::Point pp;
pp.x = p.x;
pp.y = p.y;
pp.z = p.z;
return pp;
});
std::vector<int> groundIndexes, offGroundIndexes;
clothSimulationFilter(pc, groundIndexes, offGroundIndexes);
pcl::PointCloud<pcl::PointXYZI>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZI>);
addPointCloud(groundIndexes, cloud,cloud_filtered);
pcl::PCDWriter writer;
writer.write<pcl::PointXYZI>("groundPointCloud.pcd", *cloud_filtered, false);
cloud_filtered->points.clear();
addPointCloud(offGroundIndexes, cloud,cloud_filtered);
writer.write<pcl::PointXYZI>("nonGroundPointCloud.pcd", *cloud_filtered, false);
//pcl::visualization::CloudViewer viewer("this is a point cloud viewer haha!!");
//viewer.showCloud(cloud_filtered);
//while (!viewer.wasStopped())
//{
//}
return 0;
}
二、相关配置
1.配置CSF工程
在github上下载CSF的源码,在windows下使用cmake-gui进行配置(相关操作略,可自行百度),配置好后,会出现如图所示的build文件夹。
在build文件夹下打开CSF.sln
对里面的工程进行生成,生成成功后的CSF.lib保存在如下图所示的位置。
(生成CSF工程的过程中可能会报命令的错误,自行百度可解决。)
2.配置自己的工程
配置附加包含目录,注意包含CSF.h所在的文件目录。
在附加依赖项中添加CSF工程中生成的CSF.lib文件
分割效果
原始点云
分割后的地面点云
分割后的非地面点云
标签:csf,CSF,pc,点云,filtered,kitti,cloud 来源: https://blog.csdn.net/qq_42976369/article/details/120974552