HyperLPR 高性能中文车牌识别系统分析(一)
作者:互联网
2021SC@SDUSC
概述
此次文章主要分析finemapping_vertical.py文件
调用的库
#coding=utf-8
from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense
from keras.models import Model, Sequential
from keras.layers.advanced_activations import PReLU
from keras.optimizers import adam
import numpy as np
import cv2
由代码可知,主要调用的库为keras、cv2
keras
Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果
以下是keras的框架架构
代码分析
def getModel():
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
#将此形状更改为[None,None,3]以启用仲裁形状输入
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = Activation("relu", name='relu1')(x)
x = MaxPool2D(pool_size=2)(x)
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = Activation("relu", name='relu2')(x)
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
x = Activation("relu", name='relu3')(x)
x = Flatten()(x)
output = Dense(2,name = "dense")(x)
output = Activation("relu", name='relu4')(output)
model = Model([input], [output])
return model
def gettest_model():
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
A = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
B = Activation("relu", name='relu1')(A)
C = MaxPool2D(pool_size=2)(B)
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(C)
x = Activation("relu", name='relu2')(x)
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
K = Activation("relu", name='relu3')(x)
x = Flatten()(K)
dense = Dense(2,name = "dense")(x)
output = Activation("relu", name='relu4')(dense)
x = Model([input], [output])
x.load_weights("./model/model12.h5")
ok = Model([input], [dense])
for layer in ok.layers:
print(layer)
return ok
首先将图像的形状更改为[None, None,3]以启用总裁形状输入,然后使用二维卷积Con2v,及配合激活函数Activation对传入的图像构建神经网络系统并定义模型结构。激活函数在深度学习中扮演着非常重要的角色,它给网络赋予了非线性,从而使得神经网络能够拟合任意复杂的函数。非线性激活函数可以使神经网络随意逼近复杂函数,没有激活函数带来的非线性,多层神经网络和单层无异。
model = getModel()
model.load_weights("./model/model12.h5")
传入图片,进行模型结构的构建,并将构建好的模型返回到model变量中
def finemappingVertical(image):
resized = cv2.resize(image,(66,16))
resized = resized.astype(np.float)/255
res= model.predict(np.array([resized]))[0]
print("keras_predict",res)
res =res*image.shape[1]
res = res.astype(np.int)
H,T = res
H-=3
#3 79.86
#4 79.3
#5 79.5
#6 78.3
#T
#T+1 80.9
#T+2 81.75
#T+3 81.75
if H<0:
H=0
T+=2;
if T>= image.shape[1]-1:
T= image.shape[1]-1
image = image[0:35,H:T+2]
image = cv2.resize(image, (int(136), int(36)))
return image
使用python的openCV的cv2库对其进行裁剪,最终裁剪为136*36的大小,并返回这个图片。该函数的目的便是裁剪图片,使图片的识别的效率更高
标签:HyperLPR,name,image,系统分析,shape,input,model,车牌,Activation 来源: https://blog.csdn.net/m0_57704837/article/details/120693970