【图像配准】基于粒子群改进的sift图像配准matlab源码
作者:互联网
1 基于粒子群改进的sift图像配准
模型参考这里。
2 部分代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% close all; clear all; %% image path file_image=''; %% read two images [filename,pathname]=uigetfile({'*.*','All Files(*.*)'},'Select reference image',... file_image); image_1=imread(strcat(pathname,filename)); [filename,pathname]=uigetfile({'*.*','All Files(*.*)'},'Select the image to be registered',... file_image); image_2=imread(strcat(pathname,filename)); %% Display the reference image and the image to be registered figure; subplot(1,2,1); imshow(image_1); title('Reference image'); subplot(1,2,2); imshow(image_2); title('Image to be registered'); %% make file for save images if (exist('save_image','dir')==0)%如果文件夹不存在 mkdir('save_image'); end t1=clock;%Start time %% Convert input image format [~,~,num1]=size(image_1); [~,~,num2]=size(image_2); if(num1==3) image_11=rgb2gray(image_1); else image_11=image_1; end if(num2==3) image_22=rgb2gray(image_2); else image_22=image_2; end %Converted to floating point data between 0-1 image_11=im2double(image_11); image_22=im2double(image_22); %% Define the constants used sigma=1.6;%Bottom Gauss Pyramid scale dog_center_layer=3;%Defines the DOG Pyramid intermediate layer, the default is 3 contrast_threshold_1=0.04;%Contrast threshold of reference image contrast_threshold_2=0.04;%Contrast threshold of the image to be registered edge_threshold=10;%Edge threshold is_double_size=false;%Whether the image size is enlarged,the default is 'false',to get more points, set it to 'true' change_form='similarity';%Select geometric transformation type,it can be 'similarity','affine' %% The number of groups in Gauss Pyramid nOctaves_1=num_octaves(image_11,is_double_size); nOctaves_2=num_octaves(image_22,is_double_size); %% Generation of the first layer of the Gauss scale image image_11=create_initial_image(image_11,is_double_size,sigma); image_22=create_initial_image(image_22,is_double_size,sigma); %% Generating Gauss Pyramid of reference image tic; [gaussian_pyramid_1,gaussian_gradient_1,gaussian_angle_1]=... build_gaussian_pyramid(image_11,nOctaves_1,dog_center_layer,sigma); disp(['Reference image generation Gauss Pyramid spent time is:',num2str(toc),'s']); %% Generating DOG Pyramid of reference image tic; dog_pyramid_1=build_dog_pyramid(gaussian_pyramid_1,nOctaves_1,dog_center_layer); disp(['Reference image generation DOG Pyramid spent time is:',num2str(toc),'s']); clear gaussian_pyramid_1; %% Search for extreme points in the DOG Pyramid of the reference image tic; [key_point_array_1]=find_scale_space_extream... (... dog_pyramid_1,... nOctaves_1,... dog_center_layer,... contrast_threshold_1,... sigma,... edge_threshold,... gaussian_gradient_1,... gaussian_angle_1... ); disp(['The extreme points of the reference image detection spend time is:',num2str(toc),'s']); clear dog_pyramid_1; %% The feature point descriptor generation,Reference image tic; [descriptors_1,locs_1]=calc_descriptors(gaussian_gradient_1,gaussian_angle_1,..... key_point_array_1,is_double_size); disp(['Reference image feature point descriptor generation spend time is:',num2str(toc),'s']); clear gaussian_gradient_1; clear gaussian_angle_1; %% Generating Gauss Pyramid of the image to be registered tic; [gaussian_pyramid_2,gaussian_gradient_2,gaussian_angle_2]=... build_gaussian_pyramid(image_22,nOctaves_2,dog_center_layer,sigma); disp(['The image to be registered generation Gauss Pyramid spent time is:',num2str(toc),'s']); %% Generating DOG Pyramid of the image to be registered tic; dog_pyramid_2=build_dog_pyramid(gaussian_pyramid_2,nOctaves_2,dog_center_layer); disp(['The image to be registered generation DOG Pyramid spent time is::',num2str(toc),'s']); clear gaussian_pyramid_2; %% Search for extreme points int the DOG Pyramid of the image to be registered tic; [key_point_array_2]=find_scale_space_extream... (... dog_pyramid_2,... nOctaves_2,... dog_center_layer,... contrast_threshold_2,... sigma,... edge_threshold,... gaussian_gradient_2,... gaussian_angle_2... ); disp(['The extreme points of the image to be registered detection spend time is:',num2str(toc),'s']); clear dog_pyramid_2; %% The feature point descriptor generation,the image to be registered tic; [descriptors_2,locs_2]=calc_descriptors(gaussian_gradient_2,gaussian_angle_2,... key_point_array_2,is_double_size); disp(['The image to be registered feature point descriptor generation spend time is:',num2str(toc),'s']); clear gaussian_gradient_2; clear gaussian_angle_2; %% Calculation of geometric transformation parameters tic; [solution,~,cor1,cor2]=... match(image_2, image_1,descriptors_2,locs_2,descriptors_1,locs_1,change_form); disp(['Feature point matching spend time is:',num2str(toc),'s']); tform=maketform('projective',solution'); [M,N,P]=size(image_1); ff=imtransform(image_2,tform, 'XData',[1 N], 'YData',[1 M]); button=figure; subplot(1,2,1); imshow(image_1); title('Reference image'); subplot(1,2,2); imshow(ff); title('Image after registration'); str1=['.\save_image\','Results after registration','.jpg']; saveas(button,str1,'jpg'); t2=clock; disp(['Total spending time is:',num2str(etime(t2,t1)),'s']); %% Display the detected feature points on the image [button1,button2]=showpoint_detected(image_1,image_2,locs_1,locs_2); str1=['.\save_image\','Reference image detection point','.jpg']; saveas(button1,str1,'jpg'); str1=['.\save_image\','Points detected in the image to be registered','.jpg']; saveas(button2,str1,'jpg'); %% Image fusion image_fusion(image_1,image_2,solution);
3 仿真结果
4 参考文献
[1]冯林, 张名举, 贺明峰,等. 用改进的粒子群算法实现多模态刚性医学图像的配准[J]. 计算机辅助设计与图形学学报, 2004(09):1269-1274.
5 代码下载
获取代码方式1:
完整代码已上传我的资源
获取代码方式2:
通过订阅博主博客付费专栏,凭支付凭证,私信博主,可获得此代码。
博主擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
标签:...,配准,%%,image,pyramid,gaussian,dog,源码,图像 来源: https://blog.csdn.net/qq_59747472/article/details/120587285