【SVM分类】基于狮群算法优化实现SVM数据分类matlab源码
作者:互联网
一、神经网络-支持向量机
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 2 算法部分
二、狮群算法
三、代码
%_________________________________________________________________________% %狮群算法 % %_________________________________________________________________________% function [Best_pos,Best_score,curve]=LSO(pop,Max_iter,lb,ub,dim,fobj) beta = 0.5;%成年狮所占比列 Nc = round(pop*beta);%成年狮数量 Np = pop-Nc;%幼师数量 if(max(size(ub)) == 1) ub = ub.*ones(1,dim); lb = lb.*ones(1,dim); end %种群初始化 X0=initialization(pop,dim,ub,lb); X = X0; %计算初始适应度值 fitness = zeros(1,pop); for i = 1:pop fitness(i) = fobj(X(i,:)); end [value, index]= min(fitness);%找最小值 GBestF = value;%全局最优适应度值 GBestX = X(index,:);%全局最优位置 curve=zeros(1,Max_iter); XhisBest = X; fithisBest = fitness; indexBest = index; gbest = GBestX; for t = 1: Max_iter %母狮移动范围扰动因子计算 stepf = 0.1*(mean(ub) - mean(lb)); alphaf = stepf*exp(-30*t/Max_iter)^10; %幼狮移动范围扰动因子计算 alpha = (Max_iter - t)/Max_iter; %母狮位置更新 for i = 1:Nc index = i; while(index == i) index = randi(Nc);%随机挑选一只母狮 end X(i,:) = (X(i,:) + X(index,:)).*(1 + alphaf.*randn())./2; end %幼师位置更新 for i = Nc+1:pop q=rand; if q<=1/3 X(i,:) = (gbest + XhisBest(i,:)).*( 1 + alpha.*randn())/2; elseif q>1/3&&q<2/3 indexT = i; while indexT == i indexT = randi(Nc) + pop - Nc;%随机位置 end X(i,:) = (X(indexT,:) + XhisBest(i,:)).*( 1 + alpha.*randn())/2; else gbestT = ub + lb - gbest; X(i,:) = (gbestT + XhisBest(i,:)).*( 1 + alpha.*randn())/2; end end %边界控制 for j = 1:pop for a = 1: dim if(X(j,a)>ub) X(j,a) =ub(a); end if(X(j,a)<lb) X(j,a) =lb(a); end end end %计算适应度值 for j=1:pop fitness(j) = fobj(X(j,:)); end for j = 1:pop if(fitness(j)<fithisBest(j)) XhisBest(j,:) = X(j,:); fithisBest(j) = fitness(j); end if(fitness(j) < GBestF) GBestF = fitness(j); GBestX = X(j,:); indexBest = j; end end %% 狮王更新 Temp = gbest.*(1 + randn().*abs(XhisBest(indexBest,:) - gbest)); Temp(Temp>ub)=ub(Temp>ub); Temp(Temp<lb) = lb(Temp<lb); fitTemp = fobj(Temp); if(fitTemp<GBestF) GBestF =fitTemp; GBestX = Temp; X(indexBest,:)=Temp; fitness(indexBest) = fitTemp; end [value, index]= min(fitness);%找最小值 gbest = X(index,:);%当前代,种群最优值 curve(t) = GBestF; end Best_pos = GBestX; Best_score = curve(end); end
5.参考文献:
书籍《MATLAB神经网络43个案例分析》
标签:index,SVM,lb,Max,分类,pop,源码,iter,ub 来源: https://www.cnblogs.com/matlabxiao/p/15058628.html