09 机器学习 - Kmeans聚类算法案例
作者:互联网
1. 需求
对给定的数据集进行聚类
本案例采用二维数据集,共80个样本,有4个类。样例如下(testSet.txt):
1.658985 4.285136
-3.453687 3.424321
4.838138 -1.151539
-5.379713 -3.362104
0.972564 2.924086
-3.567919 1.531611
0.450614 -3.302219
-3.487105 -1.724432
2.668759 1.594842
-3.156485 3.191137
3.165506 -3.999838
-2.786837 -3.099354
4.208187 2.984927
-2.123337 2.943366
0.704199 -0.479481
-0.392370 -3.963704
2.831667 1.574018
-0.790153 3.343144
2.943496 -3.357075
2. python代码实现
2.1 利用numpy手动实现
from numpy import *
#加载数据
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float, curLine) #变成float类型
dataMat.append(fltLine)
return dataMat
# 计算欧几里得距离
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2)))
#构建聚簇中心,取k个(此例中为4)随机质心
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n))) #每个质心有n个坐标值,总共要k个质心
for j in range(n):
minJ = min(dataSet[:,j])
maxJ = max(dataSet[:,j])
rangeJ = float(maxJ - minJ)
centroids[:,j] = minJ + rangeJ * random.rand(k, 1)
return centroids
#k-means 聚类算法
def kMeans(dataSet, k, distMeans =distEclud, createCent = randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2))) #用于存放该样本属于哪类及质心距离
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False;
for i in range(m):
minDist = inf; minIndex = -1;
for j in range(k):
distJI = distMeans(centroids[j,:], dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True;
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A == cent)[0]] # 去第一列等于cent的所有列
centroids[cent,:] = mean(ptsInClust, axis = 0)
return centroids, clusterAssment
2.2 利用scikili库实现
Scikit-Learn是基于python的机器学习模块,基于BSD开源许可证。
scikit-learn的基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选择,数据预处理。包括SVM,决策树,GBDT,KNN,KMEANS等等。
Kmeans在scikit包中即已有实现,只要将数据按照算法要求处理好,传入相应参数,即可直接调用其kmeans函数进行聚类。
#################################################
# kmeans: k-means cluster
#################################################
from numpy import *
import time
import matplotlib.pyplot as plt
## step 1:加载数据
print "step 1: load data..."
dataSet = []
fileIn = open('E:/Python/ml-data/kmeans/testSet.txt')
for line in fileIn.readlines():
lineArr = line.strip().split('\t')
dataSet.append([float(lineArr[0]), float(lineArr[1])])
## step 2: 聚类
print "step 2: clustering..."
dataSet = mat(dataSet)
k = 4
centroids, clusterAssment = kmeans(dataSet, k)
## step 3:显示结果
print "step 3: show the result..."
showCluster(dataSet, k, centroids, clusterAssment)
2.3 运行结果
不同的类用不同的颜色来表示,其中的大菱形是对应类的均值质心点。
标签:float,09,Kmeans,centroids,dataSet,step,clusterAssment,聚类 来源: https://blog.51cto.com/u_15294985/3007717