[LeetCode] 1130. Minimum Cost Tree From Leaf Values 叶值的最小代价生成树
作者:互联网
Given an array arr
of positive integers, consider all binary trees such that:
- Each node has either 0 or 2 children;
- The values of
arr
correspond to the values of each leaf in an in-order traversal of the tree. (Recall that a node is a leaf if and only if it has 0 children.) - The value of each non-leaf node is equal to the product of the largest leaf value in its left and right subtree respectively.
Among all possible binary trees considered, return the smallest possible sum of the values of each non-leaf node. It is guaranteed this sum fits into a 32-bit integer.
Example 1:
Input: arr = [6,2,4]
Output: 32
Explanation:
There are two possible trees. The first has non-leaf node sum 36, and the second has non-leaf node sum 32.
24 24
/ \ /\
12 4 6 8
/ \ /\
6 2 2 4
Constraints:
2 <= arr.length <= 40
1 <= arr[i] <= 15
- It is guaranteed that the answer fits into a 32-bit signed integer (ie. it is less than
2^31
).
这道题给了一个数组,说是里面都是一棵树的叶结点,说是其组成的树是一棵满二叉树,且这些叶结点值是通过中序遍历得到的,树中的非叶结点值是是其左右子树中最大的两个叶结点值的乘积,满足这些条件的二叉树可能不止一个,现在让找出非叶结点值之和最小的那棵树,并返回这个最小值。这道题的要求挺多的,好在给了一个带图的例子,可以帮助我们理解,通过观察例子,可以发现叶结点值 6,2,4 的顺序是不能变的,但是其组合方式可能很多,若有很多个叶结点,那么其组合方式就非常的多了。题目中给的提示是用动态规划 Dynamic Programming 来做,用一个二维的 dp 数组,其中 dp[i][j] 表示在区间 [i, j] 内的子数组组成的二叉树得到非叶结点值之和的最小值,接下来想状态转移方程怎么写。首先,若只有一个叶结点的话,是没法形成非叶结点的,所以 dp[i][i] 是0,最少得有两个叶结点,才有非0的值,即 dp[i][i+1] = arr[i] * arr[i+1]
,而一旦区间再大一些,就要遍历其中所有的小区间的情况,用其中的最小值来更新大区间的 dp 值。这种按区间长度顺序来更新的方法在之前的题目中也出现过,比如 Burst Balloons 和 Remove Boxes。这里的区间长度从1到n,长度为1,表示至少有两个叶结点,i从0遍历到 n-len,j可以直接确定出来为 i+len,然后用k来将区间 [i, j] 分为两个部分,由于分开的小区间在之前都已经更新过了,所以其 dp 值可以直接得到,然后再加上这两个区间中各自的最大结点值的乘积。为了不每次都遍历小区间来获得最大值,可以提前计算好任意区间的最大值,保存在 maxVec 中,这样就可以快速获取了,最后返回的结果保存在 dp[0][n-1] 中,参见代码如下:
解法一:
class Solution {
public:
int mctFromLeafValues(vector<int>& arr) {
int n = arr.size();
vector<vector<int>> dp(n, vector<int>(n));
vector<vector<int>> maxVec(n, vector<int>(n));
for (int i = 0; i < n; ++i) {
int curMax = 0;
for (int j = i; j < n; ++j) {
curMax = max(curMax, arr[j]);
maxVec[i][j] = curMax;
}
}
for (int len = 1; len < n; ++len) {
for (int i = 0; i + len < n; ++i) {
int j = i + len;
dp[i][j] = INT_MAX;
for (int k = i; k < j; ++k) {
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + maxVec[i][k] * maxVec[k + 1][j]);
}
}
}
return dp[0][n - 1];
}
};
下面的这种解法是参见了大神 lee215 的帖子,是一种利用单调栈来解的方法,将时间复杂度优化到了线性,惊为天人。思路是这样的,当两个叶结点生成一个父结点值,较小的那个数字使用过一次之后就不再被使用了,因为之后形成的结点是要子树中最大的那个结点值。所以问题实际上可以转化为在一个数组中,每次选择两个相邻的数字a和b,移除较小的那个数字,代价是 a*b
,问当移除到数组只剩下一个数字的最小的代价。Exactly same problem,所以b是有可能复用的,要尽可能的 minimize,数字a可以是一个局部最小值,那么b就是a两边的那个较小的数字,这里使用一个单调栈来做是比较方便的。关于单调栈,博主之前也有写过一篇总结 LeetCode Monotonous Stack Summary 单调栈小结,在 LeetCode 中的应用也非常多,是一种必须要掌握的方法。这里维护一个最小栈,当前栈顶的元素是最小的,一旦遍历到一个较大的数字,此时当前栈顶的元素其实是一个局部最小值,它就需要跟旁边的一个较小的值组成一个左右叶结点,这样形成的父结点才是最小的,然后将较小的那个数字移除,符合上面的分析。然后继续比较新的栈顶元素,若还是小,则继续相同的操作,否则退出循环,将当前的数字压入栈中。最后若栈中还有数字剩余,则一定是从大到小的,只需将其按顺序两两相乘即可,参见代码如下:
解法二:
class Solution {
public:
int mctFromLeafValues(vector<int>& arr) {
int res = 0, n = arr.size();
vector<int> st{INT_MAX};
for (int num : arr) {
while (!st.empty() && st.back() <= num) {
int mid = st.back();
st.pop_back();
res += mid * min(st.back(), num);
}
st.push_back(num);
}
for (int i = 2; i < st.size(); ++i) {
res += st[i] * st[i - 1];
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/1130
类似题目:
Largest Rectangle in Histogram
参考资料:
https://leetcode.com/problems/minimum-cost-tree-from-leaf-values/
LeetCode All in One 题目讲解汇总(持续更新中...)
标签:结点,Leaf,int,1130,Tree,arr,len,leaf,dp 来源: https://www.cnblogs.com/grandyang/p/14826993.html