图像增强
作者:互联网
import imageio
import imgaug as ia
from imgaug import augmenters as iaa
# matplotlib inline
import cv2 as cv
import numpy as np
from scipy import ndimage
def inhance(path1,path2):
image = imageio.imread("img.png") # Image格式
print("Original")
#实现仿射变换,本节仅利用了其中的旋转操作;
rotate = iaa.Affine(rotate=(-25, 25))
image_rotate = rotate(image=image)
cv.imwrite(path1[:-4] + 'rotate' + path1[-4:], image_rotate)
#添加高斯白噪声
addGasss=iaa.AdditiveGaussianNoise(scale=(10, 60))
image_addGasss=addGasss(image=image)
cv.imwrite(path1[:-4] + 'addGasss' + path1[-4:], image_addGasss)
#实现裁剪和边缘补充
cropandpad=iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="edge")
image_cropandpad = cropandpad(image=image)
cv.imwrite(path1[:-4] + 'cropandpad' + path1[-4:], image_cropandpad)
#Hue空间调整饱和度
addToSatu = iaa.AddToHueAndSaturation((-60, 60))
image_addToSatu = addToSatu(image=image)
cv.imwrite(path1[:-4] + 'addToSatu' + path1[-4:], image_addToSatu)
#随机弹性变换(仿射变换的一种)
addElastic = iaa.AddToHueAndSaturation((-60, 60))
image_addElastic = addElastic(image=image)
cv.imwrite(path1[:-4] + 'addElastic' + path1[-4:], image_addElastic)
#左右翻转
h_flip = cv.flip(image, 1) #左右
cv.imwrite(path1[:-4] + 'h_flip' + path1[-4:], h_flip)
#上下翻转
w_flip = cv.flip(image, 0) #上下
cv.imwrite(path1[:-4] + 'w_flip' + path1[-4:], w_flip)
#旋转90度
img_rote_90 = ndimage.rotate(image, 90)
cv.imwrite(path1[:-4] + 'img_rote_90' + path1[-4:], img_rote_90)
#旋转180度
img_rote_180 = ndimage.rotate(image, 180)
cv.imwrite(path1[:-4] + 'img_rote_180' + path1[-4:], img_rote_180)
#旋转270度
img_rote_270 = ndimage.rotate(image, 270)
cv.imwrite(path1[:-4] + 'img_rote_270' + path1[-4:], img_rote_270)
if __name__ == '__main__':
inhance('img.png','img_1.png')
标签:path1,img,image,cv,imwrite,rote,图像增强 来源: https://blog.csdn.net/weixin_41570231/article/details/117266890