其他分享
首页 > 其他分享> > JS 中的 number 为何很怪异?

JS 中的 number 为何很怪异?

作者:互联网

声明:需要读者对二进制有一定的了解

对于 JavaScript 开发者来说,或多或少都遇到过 js 在处理数字上的奇怪现象,比如:

  1. > 0.1 + 0.2

  2. 0.30000000000000004


  3. > 0.1 + 1 - 1

  4. 0.10000000000000009


  5. > 0.1 * 0.2

  6. 0.020000000000000004


  7. > Math.pow(2, 53)

  8. 9007199254740992


  9. > Math.pow(2, 53) + 1

  10. 9007199254740992


  11. > Math.pow(2, 53) + 3

  12. 9007199254740996

如果想要弄明白为什么会出现这些奇怪现象,首先要弄清楚 JavaScript 是怎样编码数字的。

1. JavaScript 是怎样编码数字的

JavaScript 中的数字,不管是整数、小数、分数,还是正数、负数,全部是浮点数,都是用 8 个字节(64 位)来存储的。

一个数字(如 120.12-999)在内存中占用 8 个字节(64 位),存储方式如下:

  1. 0-51:分数部分(52 位)

  2. 52-62:指数部分(11 位)

  3. 63:符号位(1 位:0 表示这个数是正数,1 表示这个数是负数)

符号位很好理解,用于指明是正数还是负数,且只有 1 位、两种情况(0 表示正数,1 表示负数)。

其他两部分是分数部分和指数部分,用于计算一个数的绝对值。

1.1 绝对值计算公式
1: abs = 1.f * 2 ^ (e - 1023)             0 < e < 2047
2: abs = 0.f * 2 ^ (e - 1022)             e = 0, f > 0
3: abs = 0                                e = 0, f = 0
4: abs = NaN                              e = 2047, f > 0
5: abs = ∞ (infinity, 无穷大)              e = 2047, f = 0

说明:

从上面的公式可以看出:

1.2 绝对值的取值范围与边界

从上面的公式可以看出:

1.2.1 0<e<2047

0<e<2047 时,取值范围为: f=0,e=1f=11...11,e=2046(中间省略 48 个 1)

即: Math.pow(2,-1022)~=Math.pow(2,1024)-1~= 表示约等于)

这当中, ~=Math.pow(2,1024)-1 就是 Number.MAX_VALUE 的值, js 所能表示的最大数值。

1.2.2 e=0,f>0

e=0,f>0 时,取值范围为: f=00...01,e=0(中间省略 48 个 0) 到 f=11...11,e=0(中间省略 48 个 1)

即: Math.pow(2,-1074)~=Math.pow(2,-1022)~= 表示约等于)

这当中, Math.pow(2,-1074) 就是 Number.MIN_VALUE 的值, js 所能表示的最小数值(绝对值)。

1.2.3 e=0,f=0

这只表示一个值 0,但加上符号位,所以有 +0-0

但在运算中:

> +0 === -0true

1.2.4 e=2047,f>0

这只表示一种值 NaN

但在运算中:

  1. > NaN == NaN

  2. false


  3. > NaN === NaN

  4. false

1.2.5 e=2047,f=0

这只表示一个值 (infinity, 无穷大)。

在运算中:

  1. > Infinity === Infinity

  2. true


  3. > -Infinity === -Infinity

  4. true

1.3 绝对值的最大安全值

从上面可以看出,8 个字节能存储的最大数值是 Number.MAX_VALUE 的值,也就是 ~=Math.pow(2,1024)-1

但这个数值并不安全:从 1Number.MAX_VALUE 中间的数字并不连续,而是离散的。

比如: Number.MAX_VALUE-1, Number.MAX_VALUE-2 等数值都无法用公式得出,就存储不了。

所以这里引出了最大安全值 Number.MAX_SAFE_INTEGER,也就是从 1Number.MAX_SAFE_INTEGER 中间的数字都是连续的,处在这个范围内的数值计算都是安全的。

f=11...11,e=1075(中间省略 48 个 1)时,取得这个值 111...11(中间省略 48 个 1),即 Math.pow(2,53)-1

大于 Number.MAX_SAFE_INTEGER:Math.pow(2,53)-1 的数值都是离散的。

比如: Math.pow(2,53)+1, Math.pow(2,53)+3 不能用公式得出,无法存储在内存中。

所以才会有文章开头的现象:

  1. > Math.pow(2, 53)

  2. 9007199254740992


  3. > Math.pow(2, 53) + 1

  4. 9007199254740992


  5. > Math.pow(2, 53) + 3

  6. 9007199254740996

因为 Math.pow(2,53)+1 不能用公式得出,就无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数, Math.pow(2,53),然后存储在内存中,这就是失真,即不安全。

1.4 小数的存储方式与计算

小数中,除了满足 m/(2^n)m,n 都是整数)的小数可以用完整的 2 进制表示之外,其他的都不能用完整的 2 进制表示,只能无限的逼近一个 2 进制小数(注: [2] 表示二进制, ^ 表示 N 次方)。

0.5 = 1 / 2 = [2]0.10.875 = 7 / 8 = 1 / 2 + 1 / 4 + 1 / 8 = [2]0.111


  1. # 0.3 的逼近


  2. 0.25 ([2]0.01) < 0.3 < 0.5 ([2]0.10)


  3. 0.296875 ([2]0.0100110) < 0.3 < 0.3046875 ([2]0.0100111)


  4. 0.2998046875 ([2]0.01001100110) < 0.3 < 0.30029296875 ([2]0.01001100111)


  5. ... 根据公式计算,直到把分数部分的 52 位填满,然后取最靠近的数


  6. 0.3 的存储方式:[2]0.010011001100110011001100110011001100110011001100110011


  7. (f = 0011001100110011001100110011001100110011001100110011, e = 1021)

从上面可以看出,小数中大部分都只是近似值,只有少部分是真实值,所以只有这少部分的值(满足 m/(2^n) 的小数)可以直接比较大小,其他的都不能直接比较。

  1. > 0.5 + 0.125 === 0.625

  2. true


  3. > 0.1 + 0.2 === 0.3

  4. false

为了安全的比较两个小数,引入 Number.EPSILON[Math.pow(2,-52)] 来比较浮点数。

> Math.abs(0.1 + 0.2 - 0.3) < Number.EPSILONtrue
1.5 小数最大保留位数

js 从内存中读取一个数时,最大保留 17 位有效数字。

> 0.0100110011001100110011001100110011001100110011001100110.300000000000000000.3
> 0.0100110011001100110011001100110011001100110011001100100.29999999999999993
> 0.0100110011001100110011001100110011001100110011001101000.30000000000000004
> 0.00000101000111101011100001010001111010111000010100011111000.020000000000000004

2. Number 对象中的常量

2.1 Number.EPSILON

表示 1 与 Number 可表示的大于 1 的最小的浮点数之间的差值。

Math.pow(2, -52)

用于浮点数之间安全的比较大小。

2.2 Number.MAXSAFEINTEGER

绝对值的最大安全值。

Math.pow(2, 53) - 1
2.3 Number.MAX_VALUE

js 所能表示的最大数值(8 个字节能存储的最大数值)。

~= Math.pow(2, 1024) - 1
2.4 Number.MINSAFEINTEGER

最小安全值(包括符号)。

-(Math.pow(2, 53) - 1)
2.5 Number.MIN_VALUE

js 所能表示的最小数值(绝对值)。

Math.pow(2, -1074)
2.6 Number.NEGATIVE_INFINITY

负无穷大。

-Infinity
2.7 Number.POSITIVE_INFINITY

正无穷大。

+Infinity
2.8 Number.NaN

非数字。

3. 寻找奇怪现象的原因

3.1 为什么 0.1+0.2 结果是 0.30000000000000004

0.3 的逼近算法类似。

  1. 0.1 的存储方式:[2]0.00011001100110011001100110011001100110011001100110011010


  2. (f = 1001100110011001100110011001100110011001100110011010, e = 1019)


  3. 0.2 的存储方式:[2]0.0011001100110011001100110011001100110011001100110011010


  4. (f = 1001100110011001100110011001100110011001100110011010, e = 1020)

  1. 0.1 + 0.2: 0.0100110011001100110011001100110011001100110011001100111


  2. (f = 00110011001100110011001100110011001100110011001100111, e = 1021)

f=00110011001100110011001100110011001100110011001100111 有 53 位,超过了正常的 52 位,无法存储,所以取最近的数:

  1. 0.1 + 0.2: 0.010011001100110011001100110011001100110011001100110100


  2. (f = 0011001100110011001100110011001100110011001100110100, e = 1021)

js 读取这个数字为 0.30000000000000004

3.2 为什么 Math.pow(2,53)+1 结果是 Math.pow(2,53)

因为 Math.pow(2,53)+1 不能用公式得出,无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数。

比这个数小的、最靠近的数:

  1. Math.pow(2, 53)


  2. (f = 0000000000000000000000000000000000000000000000000000, e = 1076)

比这个数大的、最靠近的数:

  1. Math.pow(2, 53) + 2


  2. (f = 0000000000000000000000000000000000000000000000000001, e = 1076)

取第一个数: Math.pow(2,53)

所以:

> Math.pow(2, 53) + 1 === Math.pow(2, 53)true

参考文章


标签:...,存储,pow,number,53,JS,怪异,Number,Math
来源: https://blog.51cto.com/u_15127653/2804642