分布式协调之zookeeper(理论篇)
作者:互联网
-
分布式协调技术
在给大家介绍ZooKeeper之前先来给大家介绍一种技术——分布式协调技术。那么什么是分布式协调技术?那么我来告诉大家,其实分布式协调技术主要用来解决分布式环境当中多个进程之间的同步控制,让他们有序的去访问某种临界资源,防止造成"脏数据"的后果。
-
zookeeper概述
ZooKeeper是一种为分布式应用所设计的高可用、高性能且一致的开源协调服务,它提供了一项基本服务:分布式锁服务。由于ZooKeeper的开源特性,后来我们的开发者在分布式锁的基础上,摸索了出了其他的使用方法:配置维护、组服务、分布式消息队列、分布式通知/协调等。
-
zookeeper的数据模型
3.1 ZooKeeper数据模型Znode
ZooKeeper拥有一个层次的命名空间,这个和标准的文件系统非常相似,如下图所示。
从图中我们可以看出ZooKeeper的数据模型,在结构上和标准文件系统的非常相似,都是采用这种树形层次结构,ZooKeeper树中的每个节点被称为—Znode。和文件系统的目录树一样,ZooKeeper树中的每个节点可以拥有子节点。但也有不同之处:
(1) 引用方式
Zonde通过路径引用,如同Unix中的文件路径。路径必须是绝对的,因此他们必须由斜杠字符来开头。除此以外,他们必须是唯一的,也就是说每一个路径只有一个表示,因此这些路径不能改变。在ZooKeeper中,路径由Unicode字符串组成,并且有一些限制。字符串"/zookeeper"用以保存管理信息,比如关键配额信息。
(2) Znode结构
ZooKeeper命名空间中的Znode,兼具文件和目录两种特点。既像文件一样维护着数据、元信息、ACL、时间戳等数据结构,又像目录一样可以作为路径标识的一部分。图中的每个节点称为一个Znode。 每个Znode由3部分组成:
① stat:此为状态信息, 描述该Znode的版本, 权限等信息
② data:与该Znode关联的数据
③ children:该Znode下的子节点
ZooKeeper虽然可以关联一些数据,但并没有被设计为常规的数据库或者大数据存储,相反的是,它用来管理调度数据,比如分布式应用中的配置文件信息、状态信息、汇集位置等等。这些数据的共同特性就是它们都是很小的数据,通常以KB为大小单位。ZooKeeper的服务器和客户端都被设计为严格检查并限制每个Znode的数据大小至多1M,但常规使用中应该远小于此值。
(3) 数据访问
ZooKeeper中的每个节点存储的数据要被原子性的操作。也就是说读操作将获取与节点相关的所有数据,写操作也将替换掉节点的所有数据。另外,每一个节点都拥有自己的ACL(访问控制列表),这个列表规定了用户的权限,即限定了特定用户对目标节点可以执行的操作。
(4) 节点类型
ZooKeeper中的节点有两种,分别为临时节点和永久节点。节点的类型在创建时即被确定,并且不能改变。
① 临时节点:该节点的生命周期依赖于创建它们的会话。一旦会话(Session)结束,临时节点将被自动删除,当然可以也可以手动删除。虽然每个临时的Znode都会绑定到一个客户端会话,但他们对所有的客户端还是可见的。另外,ZooKeeper的临时节点不允许拥有子节点。
② 永久节点:该节点的生命周期不依赖于会话,并且只有在客户端显示执行删除操作的时候,他们才能被删除。
(5) 顺序节点
当创建Znode的时候,用户可以请求在ZooKeeper的路径结尾添加一个递增的计数。这个计数对于此节点的父节点来说是唯一的,它的格式为"%10d"(10位数字,没有数值的数位用0补充,例如"0000000001")。当计数值大于232-1时,计数器将溢出。
(6) 观察
客户端可以在节点上设置watch,我们称之为监视器。当节点状态发生改变时(Znode的增、删、改)将会触发watch所对应的操作。当watch被触发时,ZooKeeper将会向客户端发送且仅发送一条通知,因为watch只能被触发一次,这样可以减少网络流量。
3.2 ZooKeeper中的时间
ZooKeeper有多种记录时间的形式,其中包含以下几个主要属性:
(1) Zxid
致使ZooKeeper节点状态改变的每一个操作都将使节点接收到一个Zxid格式的时间戳,并且这个时间戳全局有序。也就是说,也就是说,每个对节点的改变都将产生一个唯一的Zxid。如果Zxid1的值小于Zxid2的值,那么Zxid1所对应的事件发生在Zxid2所对应的事件之前。实际上,ZooKeeper的每个节点维护者三个Zxid值,为别为:cZxid、mZxid、pZxid。
① cZxid: 是节点的创建时间所对应的Zxid格式时间戳。
② mZxid:是节点的修改时间所对应的Zxid格式时间戳。
实现中Zxid是一个64为的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个 新的epoch。低32位是个递增计数。 (2) 版本号
对节点的每一个操作都将致使这个节点的版本号增加。每个节点维护着三个版本号,他们分别为:
① version:节点数据版本号
② cversion:子节点版本号
③ aversion:节点所拥有的ACL版本号
3.3 ZooKeeper节点属性
通过前面的介绍,我们可以了解到,一个节点自身拥有表示其状态的许多重要属性,如下图所示。
- ZooKeeper服务中操作
在ZooKeeper中有9个基本操作,如下图所示:
更新ZooKeeper操作是有限制的。delete或setData必须明确要更新的Znode的版本号,我们可以调用exists找到。如果版本号不匹配,更新将会失败。
更新ZooKeeper操作是非阻塞式的。因此客户端如果失去了一个更新(由于另一个进程在同时更新这个Znode),他可以在不阻塞其他进程执行的情况下,选择重新尝试或进行其他操作。
尽管ZooKeeper可以被看做是一个文件系统,但是处于便利,摒弃了一些文件系统地操作原语。因为文件非常的小并且使整体读写的,所以不需要打开、关闭或是寻地的操作。
- Watch触发器
(1) watch概述
ZooKeeper可以为所有的读操作设置watch,这些读操作包括:exists()、getChildren()及getData()。watch事件是一次性的触发器,当watch的对象状态发生改变时,将会触发此对象上watch所对应的事件。watch事件将被异步地发送给客户端,并且ZooKeeper为watch机制提供了有序的一致性保证。理论上,客户端接收watch事件的时间要快于其看到watch对象状态变化的时间。
(2) watch类型
ZooKeeper所管理的watch可以分为两类:
① 数据watch(data watches):getData和exists负责设置数据watch
② 孩子watch(child watches):getChildren负责设置孩子watch
我们可以通过操作返回的数据来设置不同的watch:
① getData和exists:返回关于节点的数据信息
② getChildren:返回孩子列表
因此
① 一个成功的setData操作将触发Znode的数据watch
② 一个成功的create操作将触发Znode的数据watch以及孩子watch
③ 一个成功的delete操作将触发Znode的数据watch以及孩子watch
(3) watch注册与处触发
① exists操作上的watch,在被监视的Znode创建、删除或数据更新时被触发。
② getData操作上的watch,在被监视的Znode删除或数据更新时被触发。在被创建时不能被触发,因为只有Znode一定存在,getData操作才会成功。
③ getChildren操作上的watch,在被监视的Znode的子节点创建或删除,或是这个Znode自身被删除时被触发。可以通过查看watch事件类型来区分是Znode,还是他的子节点被删除:NodeDelete表示Znode被删除,NodeDeletedChanged表示子节点被删除。
Watch由客户端所连接的ZooKeeper服务器在本地维护,因此watch可以非常容易地设置、管理和分派。当客户端连接到一个新的服务器时,任何的会话事件都将可能触发watch。另外,当从服务器断开连接的时候,watch将不会被接收。但是,当一个客户端重新建立连接的时候,任何先前注册过的watch都会被重新注册。
(4) 需要注意的几点
Zookeeper的watch实际上要处理两类事件:
① 连接状态事件(type=None, path=null)
这类事件不需要注册,也不需要我们连续触发,我们只要处理就行了。
② 节点事件
节点的建立,删除,数据的修改。它是one time trigger,我们需要不停的注册触发,还可能发生事件丢失的情况。
上面2类事件都在Watch中处理,也就是重载的process(Event event)
节点事件的触发,通过函数exists,getData或getChildren来处理这类函数,有双重作用:
① 注册触发事件
② 函数本身的功能
函数的本身的功能又可以用异步的回调函数来实现,重载processResult()过程中处理函数本身的的功能。
- ZAB协议
ZAB协议是专门为zookeeper实现分布式协调功能而设计。zookeeper主要是根据ZAB协议是实现分布式系统数据一致性。
zookeeper根据ZAB协议建立了主备模型完成zookeeper集群中数据的同步。这里所说的主备系统架构模型是指,在zookeeper集群中,只有一台leader负责处理外部客户端的事物请求(或写操作),然后leader服务器将客户端的写操作数据同步到所有的follower节点中。
ZAB的协议核心是在整个zookeeper集群中只有一个节点即Leader将客户端的写操作转化为事物(或提议proposal)。Leader节点再数据写完之后,将向所有的follower节点发送数据广播请求(或数据复制),等待所有的follower节点反馈。在ZAB协议中,只要超过半数follower节点反馈OK,Leader节点就会向所有的follower服务器发送commit消息。即将leader节点上的数据同步到follower节点之上。
ZAB协议中主要有两种模式,第一是消息广播模式;第二是崩溃恢复模式
消息广播模式
1.在zookeeper集群中数据副本的传递策略就是采用消息广播模式。zookeeper中数据副本的同步方式与二阶段提交相似但是却又不同。二阶段提交的要求协调者必须等到所有的参与者全部反馈ACK确认消息后,再发送commit消息。要求所有的参与者要么全部成功要么全部失败。二阶段提交会产生严重阻塞问题。
2.ZAB协议中Leader等待follower的ACK反馈是指”只要半数以上的follower成功反馈即可,不需要收到全部follower反馈”
3.图中展示了消息广播的具体流程图
4.zookeeper中消息广播的具体步骤如下:
- 客户端发起一个写操作请求
- Leader服务器将客户端的request请求转化为事物proposql提案,同时为每个proposal分配一个全局唯一的ID,即ZXID。
- leader服务器与每个follower之间都有一个队列,leader将消息发送到该队列
- follower机器从队列中取出消息处理完(写入本地事物日志中)毕后,向leader服务器发送ACK确认。
- leader服务器收到半数以上的follower的ACK后,即认为可以发送commit
- leader向所有的follower服务器发送commit消息。
5.zookeeper采用ZAB协议的核心就是只要有一台服务器提交了proposal,就要确保所有的服务器最终都能正确提交proposal。这也是CAP/BASE最终实现一致性的一个体现。
6.leader服务器与每个follower之间都有一个单独的队列进行收发消息,使用队列消息可以做到异步解耦。leader和follower之间只要往队列中发送了消息即可。如果使用同步方式容易引起阻塞。性能上要下降很多。
崩溃恢复
1.zookeeper集群中为保证任何所有进程能够有序的顺序执行,只能是leader服务器接受写请求,即使是follower服务器接受到客户端的请求,也会转发到leader服务器进行处理。
2.如果leader服务器发生崩溃,则zab协议要求zookeeper集群进行崩溃恢复和leader服务器选举。
3.ZAB协议崩溃恢复要求满足如下2个要求:
-
3.1. 确保已经被leader提交的proposal必须最终被所有的follower服务器提交。
-
3.2. 确保丢弃已经被leader出的但是没有被提交的proposal。
4.根据上述要求,新选举出来的leader不能包含未提交的proposal,即新选举的leader必须都是已经提交了的proposal的follower服务器节点。同时,新选举的leader节点中含有最高的ZXID。这样做的好处就是可以避免了leader服务器检查proposal的提交和丢弃工作。
5.leader服务器发生崩溃时分为如下场景:
- 5.1. leader在提出proposal时未提交之前崩溃,则经过崩溃恢复之后,新选举的leader一定不能是刚才的leader。因为这个leader存在未提交的proposal。
- 5.2 leader在发送commit消息之后,崩溃。即消息已经发送到队列中。经过崩溃恢复之后,参与选举的follower服务器(刚才崩溃的leader有可能已经恢复运行,也属于follower节点范畴)中有的节点已经是消费了队列中所有的commit消息。即该follower节点将会被选举为最新的leader。剩下动作就是数据同步过程。
数据同步
- 在zookeeper集群中新的leader选举成功之后,leader会将自身的提交的最大proposal的事物ZXID发送给其他的follower节点。follower节点会根据leader的消息进行回退或者是数据同步操作。最终目的要保证集群中所有节点的数据副本保持一致。
- 数据同步完之后,zookeeper集群如何保证新选举的leader分配的ZXID是全局唯一呢?这个就要从ZXID的设计谈起。
ZXID是一个长度64位的数字,其中低32位是按照数字递增,即每次客户端发起一个proposal,低32位的数字简单加1。高32位是leader周期的epoch编号,至于这个编号如何产生(我也没有搞明白),每当选举出一个新的leader时,新的leader就从本地事物日志中取出ZXID,然后解析出高32位的epoch编号,进行加1,再将低32位的全部设置为0。这样就保证了每次新选举的leader后,保证了ZXID的唯一性而且是保证递增的
。
- ZAB协议原理
ZAB协议要求每个leader都要经历三个阶段,即发现,同步,广播。
- 发现:即要求zookeeper集群必须选择出一个leader进程,同时leader会维护一个follower可用列表。将来客户端可以这follower中的节点进行通信。
- 同步:leader要负责将本身的数据与follower完成同步,做到多副本存储。这样也是体现了CAP中高可用和分区容错。follower将队列中未处理完的请求消费完成后,写入本地事物日志中。
- 广播:leader可以接受客户端新的proposal请求,将新的proposal请求广播给所有的follower。
- ZooKeeper的保证
经过上面的分析,我们知道要保证ZooKeeper服务的高可用性就需要采用分布式模式,来冗余数据写多份,写多份带来一致性问题,一致性问题又会带来性能问题,那么就此陷入了无解的死循环。那么在这,就涉及到了我们分布式领域的著名的CAP理论,在这就简单的给大家介绍一下,关于CAP的详细内容大家可以网上查阅。
8.1 CAP理论
(1) 理论概述
分布式领域中存在CAP理论:
① C:Consistency,一致性,数据一致更新,所有数据变动都是同步的。
② A:Availability,可用性,系统具有好的响应性能。
③ P:Partition tolerance,分区容错性。以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择,也就是说无论任何消息丢失,系统都可用。
该理论已被证明:任何分布式系统只可同时满足两点,无法三者兼顾。 因此,将精力浪费在思考如何设计能满足三者的完美系统上是愚钝的,应该根据应用场景进行适当取舍。
(2) 一致性分类
一致性是指从系统外部读取系统内部的数据时,在一定约束条件下相同,即数据变动在系统内部各节点应该是同步的。根据一致性的强弱程度不同,可以将一致性级别分为如下几种:
① 强一致性(strong consistency)。任何时刻,任何用户都能读取到最近一次成功更新的数据。
② 单调一致性(monotonic consistency)。任何时刻,任何用户一旦读到某个数据在某次更新后的值,那么就不会再读到比这个值更旧的值。也就是说,可获取的数据顺序必是单调递增的。
③ 会话一致性(session consistency)。任何用户在某次会话中,一旦读到某个数据在某次更新后的值,那么在本次会话中就不会再读到比这个值更旧的值。会话一致性是在单调一致性的基础上进一步放松约束,只保证单个用户单个会话内的单调性,在不同用户或同一用户不同会话间则没有保障。
④ 最终一致性(eventual consistency)。用户只能读到某次更新后的值,但系统保证数据将最终达到完全一致的状态,只是所需时间不能保障。
⑤ 弱一致性(weak consistency)。用户无法在确定时间内读到最新更新的值。
8.2 ZooKeeper与CAP理论
我们知道ZooKeeper也是一种分布式系统,它在一致性上有人认为它提供的是一种强一致性的服务(通过sync操作),也有人认为是单调一致性(更新时的大多说概念),还有人为是最终一致性(顺序一致性),反正各有各的道理这里就不在争辩了。然后它在分区容错性和可用性上做了一定折中,这和CAP理论是吻合的。ZooKeeper从以下几点保证了数据的一致性
① 顺序一致性
来自任意特定客户端的更新都会按其发送顺序被提交。也就是说,如果一个客户端将Znode z的值更新为a,在之后的操作中,它又将z的值更新为b,则没有客户端能够在看到z的值是b之后再看到值a(如果没有其他对z的更新)。
② 原子性
每个更新要么成功,要么失败。这意味着如果一个更新失败,则不会有客户端会看到这个更新的结果。
③ 单一系统映像
一个客户端无论连接到哪一台服务器,它看到的都是同样的系统视图。这意味着,如果一个客户端在同一个会话中连接到一台新的服务器,它所看到的系统状态不会比在之前服务器上所看到的更老。当一台服务器出现故障,导致它的一个客户端需要尝试连接集合体中其他的服务器时,所有滞后于故障服务器的服务器都不会接受该连接请求,除非这些服务器赶上故障服务器。
④ 持久性
一个更新一旦成功,其结果就会持久存在并且不会被撤销。这表明更新不会受到服务器故障的影响。
标签:zookeeper,watch,ZooKeeper,协调,节点,follower,客户端,leader,分布式 来源: https://blog.csdn.net/qq_36184384/article/details/117123644