DROO memory.py
作者:互联网
这个是论文《Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks》的tf1.x版本代码,这部分是DNN网络的结构。
为方便自己看代码所以放上来,完整代码在文章作者的仓库:https://github.com/revenol/DROO。
# #################################################################
# This file contains memory operation including encoding and decoding operations.
#
# version 1.0 -- January 2018. Written by Liang Huang (lianghuang AT zjut.edu.cn)
# #################################################################
from __future__ import print_function
import tensorflow as tf
import numpy as np
# DNN network for memory
class MemoryDNN:
def __init__(
self,
net,
learning_rate = 0.01,
training_interval=10,
batch_size=100,
memory_size=1000,
output_graph=False
):
# net: [n_input, n_hidden_1st, n_hidded_2ed, n_output]
assert(len(net) is 4) # only 4-layer DNN
self.net = net
self.training_interval = training_interval # learn every #training_interval
self.lr = learning_rate
self.batch_size = batch_size
self.memory_size = memory_size
# store all binary actions
self.enumerate_actions = []
# stored # memory entry
self.memory_counter = 1
# store training cost
self.cost_his = []
# reset graph
tf.reset_default_graph()
# initialize zero memory [h, m]
self.memory = np.zeros((self.memory_size, self.net[0]+ self.net[-1]))
# construct memory network
self._build_net()
self.sess = tf.Session()
# for tensorboard
if output_graph:
# $ tensorboard --logdir=logs
# tf.train.SummaryWriter soon be deprecated, use following
tf.summary.FileWriter("logs/", self.sess.graph)
self.sess.run(tf.global_variables_initializer())
def _build_net(self):
def build_layers(h, c_names, net, w_initializer, b_initializer):
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [net[0], net[1]], initializer=w_initializer, collections=c_names)
b1 = tf.get_variable('b1', [1, self.net[1]], initializer=b_initializer, collections=c_names)
l1 = tf.nn.relu(tf.matmul(h, w1) + b1)
with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [net[1], net[2]], initializer=w_initializer, collections=c_names)
b2 = tf.get_variable('b2', [1, net[2]], initializer=b_initializer, collections=c_names)
l2 = tf.nn.relu(tf.matmul(l1, w2) + b2)
with tf.variable_scope('M'):
w3 = tf.get_variable('w3', [net[2], net[3]], initializer=w_initializer, collections=c_names)
b3 = tf.get_variable('b3', [1, net[3]], initializer=b_initializer, collections=c_names)
out = tf.matmul(l2, w3) + b3
return out
# ------------------ build memory_net ------------------
self.h = tf.placeholder(tf.float32, [None, self.net[0]], name='h') # input
self.m = tf.placeholder(tf.float32, [None, self.net[-1]], name='mode') # for calculating loss
self.is_train = tf.placeholder("bool") # train or evaluate
with tf.variable_scope('memory_net'):
c_names, w_initializer, b_initializer = \
['memory_net_params', tf.GraphKeys.GLOBAL_VARIABLES], \
tf.random_normal_initializer(0., 1/self.net[0]), tf.constant_initializer(0.1) # config of layers
self.m_pred = build_layers(self.h, c_names, self.net, w_initializer, b_initializer)
with tf.variable_scope('loss'):
self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = self.m, logits = self.m_pred))
with tf.variable_scope('train'):
self._train_op = tf.train.AdamOptimizer(self.lr, 0.09).minimize(self.loss)
def remember(self, h, m):
# replace the old memory with new memory
idx = self.memory_counter % self.memory_size
self.memory[idx, :] = np.hstack((h,m))
self.memory_counter += 1
def encode(self, h, m):
# encoding the entry
self.remember(h, m)
# train the DNN every 10 step
# if self.memory_counter> self.memory_size / 2 and self.memory_counter % self.training_interval == 0:
if self.memory_counter % self.training_interval == 0:
self.learn()
def learn(self):
# sample batch memory from all memory
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
batch_memory = self.memory[sample_index, :]
h_train = batch_memory[:, 0: self.net[0]]
m_train = batch_memory[:, self.net[0]:]
# print(h_train)
# print(m_train)
# train the DNN
_, self.cost = self.sess.run([self._train_op, self.loss],
feed_dict={self.h: h_train, self.m: m_train})
assert(self.cost >0)
self.cost_his.append(self.cost)
def decode(self, h, k = 1, mode = 'OP'):
# to have batch dimension when feed into tf placeholder
h = h[np.newaxis, :]
m_pred = self.sess.run(self.m_pred, feed_dict={self.h: h})
if mode is 'OP':
return self.knm(m_pred[0], k)
elif mode is 'KNN':
return self.knn(m_pred[0], k)
else:
print("The action selection must be 'OP' or 'KNN'")
def knm(self, m, k = 1):
# return k-nearest-mode
m_list = []
# generate the first binary offloading decision
# note that here 'm' is the output of DNN before the sigmoid activation function, in the field of all real number.
# Therefore, we compare it with '0' instead of 0.5 in equation (8). Since, sigmod(0) = 0.5.
m_list.append(1*(m>0))
if k > 1:
# generate the remaining K-1 binary offloading decisions with respect to equation (9)
m_abs = abs(m)
idx_list = np.argsort(m_abs)[:k-1]
for i in range(k-1):
if m[idx_list[i]] >0:
# set a positive user to 0
m_list.append(1*(m - m[idx_list[i]] > 0))
else:
# set a negtive user to 1
m_list.append(1*(m - m[idx_list[i]] >= 0))
return m_list
def knn(self, m, k = 1):
# list all 2^N binary offloading actions
if len(self.enumerate_actions) is 0:
import itertools
self.enumerate_actions = np.array(list(map(list, itertools.product([0, 1], repeat=self.net[0]))))
# the 2-norm
sqd = ((self.enumerate_actions - m)**2).sum(1)
idx = np.argsort(sqd)
return self.enumerate_actions[idx[:k]]
def plot_cost(self):
import matplotlib.pyplot as plt
plt.plot(np.arange(len(self.cost_his))*self.training_interval, self.cost_his)
plt.ylabel('Training Loss')
plt.xlabel('Time Frames')
plt.show()
标签:self,py,initializer,DROO,memory,tf,net,size 来源: https://blog.csdn.net/weixin_40293250/article/details/116862506