【案例】星环科技助力郑州商品交易所搭建AI预测模型,提升智能决策水平
作者:互联网
期货市场连接实体经济和金融市场,有效弥补了现货市场的不足,对于稳定与促进市场经济发展发挥着重要作用。保证金标准、涨跌停板幅度、交易手续费等措施是期货交易所开展市场风控的重要手段。
以往,交易规则制定往往以专家经验和规则作为决策的主要依据,但市场随时都在发生变化,过去的规则经验往往对当下的市场反应估计不足。在这一背景下,郑州商品交易所选择了星环科技作为合作伙伴,携手推进交易所数字化变革。
PART2.问题与需求
高频交易数据量大,噪声多,数据类型较为单一,异常交易模式隐藏于这海量的交易数据当中,十分不易发现。面对庞杂的金融数据与瞬息万变的市场行情,传统异常交易识别手段面临一定挑战。
2交易行为监控智能化程度低
在针对交易行为监控方面,以往,交易所的审批工作都是基于人工完成,业务响应效率较低,亟需由人工监控转为标准化流程。
在此背景下,郑州商品交易所选择了星环科技作为合作伙伴,以解决以上痛点。星环科技成立于2013年,专注于企业级容器云计算、大数据和人工智能核心平台的产品研发,目前公司建立了多个产品系列:基于容器的智能大数据云平台TDC、一站式极速大数据平台TDH、分布式关系型数据库ArgoDB及KunDB、大数据开发工具TDS、智能分析工具Sophon等。
PART3.解决方案
星环科技利用数据科学平台的机器学习及深度学习技术,为该期货交易所搭建了深度神经网络模型,应用在风控措施辅助决策、交易异常行为识别以及套期保值额度审批三个场景中。
对应这三个场景,星环科技为该期货交易所分别搭建了三个系统一一风控措施辅助决策、异常交易识别系统以及套期保值审批额度推荐系统。
1、风控措施辅助决策,措施制定更审慎合理
风控措施规则调整属于低频度行为,过往数据较少、历史数据信噪比低。此外,期货交易品种间交易特性也并非完全一样,这对模型的算法能力提出了更高要求。
考虑到这一难点,在搭建风控措施辅助决策系统时,星环科技最终选用了基于Seq2Seq等机器学习模型的融合算法。星环科技提供的风控措施辅助决策系统,通过结合历史措施调整情况和大量历史数据,建立风控参数目标值与市场运行情况的关系模型,深度分析并挖掘不同的风控措施目标值可能对市场产生的影响(交易量、持仓量变化等),能够在政策措施出台前,评估某一政策对期货市场产生的影响,提供交易规则措施制定的辅助决策,使得政策更加审慎合理。
图1:风控措施辅助决策系统架构
星环科技为郑州商品交易所提供的异常交易(交易模式)识别系统,通过一站式大数据平台TDH和企业级智能分析工具Transwarp Sophon共同构建逆向强化学习模型,采用全方位统计分析和指标提取等手段,结合市场行情分析客户的报/撤单、成交、盈利等交易特征,进而有效识别客户的异常交易模式,提前预测市场风险。
图2:异常交易(交易模式)识别系统架构
3、套期保值审批额度推荐系统,实现审批自动化、智能化在期货市场中,生产经营者通过进行套期保值业务来回避现货交易中价格波动带来的风险,锁定生产经营成本,实现预期利润。针对套期保值交易,交易所执行的是套期保值额度审批制度,即各合约同一方向套期保值持仓合计不得超过该方向获批的套期保值额度。
该期货交易所与星环科技合作上线了套期保值审批额度推荐系统。在准确理解业务,分场景、分品种大批量的应用规则基础上,系统完成了发现规则、配置指标、配置规则、计算指标、执行规则等5个核心步骤的建设, 能够结合客户基账户数据及其他外部数据,实现自动化、智能化的即时套保额度计算预审批。
图3:套期保值审批额度推荐系统架构
该系统的运作流程如下:基于星环Slipstream模块,建立实时流计算引擎和数据处理引擎;建立多维度的指标定义功能模块及灵活多变的配置功能模块;最后,基于星环FIDE智能决策平台进行规则决策,使得配置出来的规则都够快速执行出响应的结果。PART4.实施成效
该系统实现了查询响应时间在3秒以下;所有涉及智能化算法执行响应时间在5分钟以内;模型日常训练、迭代及批处理时长则在一小时以内。
异常交易(交易模式)识别系统上线后,郑州商品交易所通过构建客户画像,能够更精准的识别不同客户的风险, 更及时发现异常交易。
上线了星环科技的这套解决方案后,郑州商品交易所实现了套期保值审批额度报表的自动生成。套保审核人员可根据实际需要,针对不同品种、合约的一般月份以及临近月份套保分别配置计算规则,用于规则额度的即时计算,并生成解释性报告。额度推荐包括可以在会员提交套保申请后3分钟内完成推荐报告。此外,套保审核人员还可进行参数配置,包括通用参数、品种(合约)具体规则等计算业务参数。
标签:AI,决策,风控,星环,郑州商品交易所,规则,套期,交易 来源: https://blog.51cto.com/u_15127640/2773041