其他分享
首页 > 其他分享> > [day1-permutation]Inverse Problem

[day1-permutation]Inverse Problem

作者:互联网

地址
首先考虑数字1,发现1一定在给定的x中。要么1在x的第一个,此时要求的p排列中1的位置一定在[1,n - m + 1]中。要么1不在第一个,假设x第i个和p的第j个是1,此时m - i <= n - j + 1,j <= n - m + 1 + i。
注意到x_1必须取在[1,n - m + 1],并且取这个区间的最小值,设取在了第i_1位,x_2一定取在[i_1 + 1, n - m],设为i_2并且这是一个子问题。
x_1=min(p_1...p_{n - m + 1}),x_1前面可以填比他大的,不在x中出现的所有数,x_1前面可能有[0,n - m]个空位。
x_2=min(p_{i_1 + 1}...p_{n - m}),如果x_2 < x_1,他前面可以填比x_1小的,比x_2大的,不在x中出现的所有数,x_1到x_2之间可能有[0,n-m-1]个空位。如果x_2 > x_1,区间[i + 1, n - m]中剩下的数可以填比x_2大的,不在x中出现的所有数。
...
考虑增量,x_2取件右端点比x_1右移一位,如果x_2取在增加的那一位n - m,必然有x_2 < x_1。
否则,如果x_2 > x_1,那么x_2一定不在n - m。

考虑x中第一个连续上升串[x_1,x_i],可以确定的是,[x_i+1,x_m]一定是a最后的n - i个元素。

#include<bits/stdc++.h>
#define ll long long
#define db double
#define mod 998244353
using namespace std;
const int maxn = 250010;
int n, m, x, ans, v;
int last, maxv, bucket[maxn];
int rd(){
	int res = 0, fl = 1;
	char c = getchar();
	while(!isdigit(c)){
		if(c == '-')	fl = -1;
		c = getchar();
	}
	while(isdigit(c)){
		res = (res << 3) + (res << 1) + c - '0';
		c = getchar();
	}
	return res * fl;
}
int main(){
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= m; ++i){
		x = rd();
		if(x > last){
			bucket[x] = i;
			last = x;
			maxv = x;
		}
		else{
			bucket[x] = -1;
			last = n;
		}
	}
	ans = 1;
	//如何计数?只考虑第一个rising序列。 
	for(int i = 1; i <= n; ++i){
//		cout << bucket[i] << " ";
		if(!bucket[i]){//haven't appear
			ans = (ll)ans * v % mod;
			v++;//用于填空 
		}
		else if(bucket[i] != -1)/*the start of the rising array*/	
		{
			v ++;
			if(i == maxv) v++;
			//appeared and isn't the start 
		}
		else if(bucket[i] == -1); 
	}
//	cout << endl;
	printf("%d\n", ans);
	return 0;
}

————————————————————————————————————————————
兔兔好可爱

标签:...,Inverse,last,int,res,填比,permutation,Problem,define
来源: https://www.cnblogs.com/GuguKun/p/14757091.html