906. Super Palindromes
作者:互联网
Let's say a positive integer is a super-palindrome if it is a palindrome, and it is also the square of a palindrome.
Given two positive integers left
and right
represented as strings, return the number of super-palindromes integers in the inclusive range [left, right]
.
Example 1:
Input: left = "4", right = "1000" Output: 4 Explanation: 4, 9, 121, and 484 are superpalindromes. Note that 676 is not a superpalindrome: 26 * 26 = 676, but 26 is not a palindrome.
Example 2:
Input: left = "1", right = "2" Output: 1
Constraints:
1 <= left.length, right.length <= 18
left
andright
consist of only digits.left
andright
cannot have leading zeros.left
andright
represent integers in the range[1, 1018]
.left
is less than or equal toright
.
class Solution { public int superpalindromesInRange(String left, String right) { Long l = Long.parseLong(left); Long r = Long.parseLong(right); int res = 0; for(long i = (long)Math.sqrt(l); i * i <= r; ) { long p = help(i); if(p * p <= r && ispal(p * p)) { res++; } i = p + 1; } return res; } public long help(long l) { String s = l + ""; int n = s.length(); String half = s.substring(0, (n +1) / 2); String revhalf = new StringBuilder(half.substring(0, n / 2)).reverse().toString(); long fir = Long.parseLong(half + revhalf); if(fir >= l) return fir; String sechalf = Long.toString(Long.valueOf(half) + 1); String revsec = new StringBuilder(sechalf.substring(0, n / 2)).reverse().toString(); long sec = Long.valueOf(sechalf + revsec); return sec; } public boolean ispal(long l) { String s = "" + l; int le = 0, ri = s.length() - 1; while(le < ri) { if(s.charAt(le++) != s.charAt(ri--)) return false; } return true; } }
https://leetcode.com/problems/super-palindromes/discuss/170774/Java-building-the-next-palindrome
从sqrt left开始找,每次都找下一个pal。help是如何找下一个pal,half是前半部分(可能是123of12345,或12of1234这种)。如果fir大于等于l,可以直接返回fir了,如果没有,比如1234的1221,这时下一个pal就应该是1331,得到的方法就是给上一个half + 1。然后再build一个pal返回。
标签:palindrome,Palindromes,906,String,Long,right,return,Super,left 来源: https://www.cnblogs.com/wentiliangkaihua/p/14747089.html