其他分享
首页 > 其他分享> > 【数学建模】基于元胞自动机的短消息网络病毒传播仿真

【数学建模】基于元胞自动机的短消息网络病毒传播仿真

作者:互联网

 
function Message_Spread_Mode
tic
load 'Data\Link.txt';    %读入连接矩阵
% load '\Data\Point_X.txt'; %读入横坐标
% load '\Data\Point_Y.txt'; %读入纵坐标
%-------------------------------------------------------------------------%
%状态分布及状态转移概率SEIR
%0:易感状态S(Susceptible)  P_0_1; (P_0_3:预免疫系数)
%1:潜伏状态E(Exposed)      P_1_0;P_1_2;P_1_3
%2:染病状态I(Infected)     P_2_0;P_2_3
%3:免疫状态R(Recovered)    P_3_0
%-------------------------------------------------------------------------%
%计算各用户节点的度                                                          
De=sum(Link);                                                              %用户节点的度
%------------——————----参数设置与说明--------------------------------%
[M N]=size(Link);                                                          %连接矩阵的规模
I_E=0.6;                                                                   %潜伏期E用户的传染强度
I_I=0.9;                                                                   %发病期I用户的传染强度
lamda=sum(De)/M;                                                           %用户单位时间内平均发送信息的数量
%P_m1:用户预免疫系数
%State:用户所处状态State=zeros(1,M);0:表示易感状态(Susceptible)
%---------------------------------1---------------------------------------%
%先讨论用户预免疫系数P_m1对病毒传播的影响
TimeStep=50;%input('短信网络内病毒传播模拟时间:');
P_m1=[0.1,0.5,0.9];         %用户预免疫系数
% State=zeros(TimeStep,M);  %用户的状态  
G_t=5;                      %G_t:用户的免疫持续时间,反映了病毒的变异频率
F_t=5;                      %F_t:用户从发现病毒到杀毒并升级病毒库的时间
for i=1:length(P_m1)
    TimeLong_F=zeros(1,M); %用户处于染病期的时间长短
    TimeLong_E=zeros(1,M); %用户处于潜伏期的时间长短
    Sta=zeros(1,M);                                                      %用户的状态 
    %进行预免疫设定
    for j=1:M
        if rand(1)<=P_m1(i)
            Sta(j)=3;         %进入免疫状态
            TimeLong_E(j)=1;  %出入潜伏期的时间为1
        else
            continue;
        end
    end
    %状态转换
    %初始随机选择一个节点为病源点(此时不能选处于免疫状态的点)
    %问题:节点度大小存在差别,可能模拟出来的结果有出于
    %      为避免这个问题,我们取度最大的节点为病源节点,如果已免疫,则选次大的,一次下去
    [Number,Sta]=Select_Infected_Point(M,Sta,De);
    %Number:病源节点
    %State :确定病源节点以后的节点状态矩阵
    State=zeros(TimeStep,M);
    Number_State=zeros(4,TimeStep);  %用户处于个状态的统计数量
    for t=1:TimeStep
        if t==1
            State(t,:)=Sta;
        else
            %模拟每个用户节点的状态
            for j=1:M
                %判断用户节点处于什么状态,然后根据其状态确定其转变情况
                if State(t-1,j)==0                          %此时处于易感状态0,可能向潜伏期转移
                    Num=Select_Number_Near(j,Link);         %找出节点j的邻居节点
                    P=zeros(1,length(Num));                 %邻居节点感染该节点的概率
                    for k=1:length(Num)
                        if State(t-1,Num(k))==1             %节点处于潜伏期E(1)
                            P(k)=I_E/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
                                (factorial([1:De(Num(k))]-1)));
                        else
                            if State(t-1,Num(k))==2          %节点处于染病期I(2)
                                P(k)=I_I/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./(factorial([1:De(Num(k))]-1)));
                            else
                                continue;
                            end
                        end
                    end
                    P_0_1=max(P);                       %节点感染病毒的概率
                    if rand<=P_0_1                      %此时节点进入潜伏期
                       State(t,j)=1;
                    else
                       State(t,j)=State(t-1,j); 
                    end
                else
                    if State(t-1,j)==1         %此时处于潜伏状态E,可能向易感S,染病I和免疫R转移
                        if rand<=1/(1+exp(-De(j)))                 %向染病状态I转移                
                            State(t,j)=2;
                            TimeLong_F(j)=TimeLong_F(j)+1;         %用户j处于染病状态的时间长短  
                        else
                            if rand<=1/(1+exp(-De(j)))             %向易感状态S转移           
                                State(t,j)=0;
                            else
                                if rand<=1/(1+exp(-De(j)))         %向免疫状态R转移
                                    State(t,j)=3;
                                    TimeLong_E(j)=TimeLong_E(j)+1; %免疫时间增加1
                                else
                                    State(t,j)=State(t-1,j);       %状态不变,依然为潜伏期E(1)
                                end
                            end
                        end
                    else
                        if State(t-1,j)==2        %此时处于欺染病状态I,可能向易感S,免疫R转移
                            if TimeLong_F(j)<=F_t         %表示此时用户不对病毒进行任何处理
                                State(t,j)=State(t-1,j);           %此时用户维持在原状态I
                                TimeLong_F(j)=TimeLong_F(j)+2;
                            else
                                %此时用户对进行杀毒并升级病毒库,进入免疫状态R
                                State(t,j)=3;
                                TimeLong_F(j)=0; %处于感染期(中毒状态)的时间长度
                                TimeLong_E(j)=1; %进入免疫期的时间长度
                            end
                        else
                            %此时用户处于免疫期
                            if TimeLong_E<=G_t   %病毒此时并未突变,维持原状态R(免疫状态)
                                State(t,j)=State(t-1,j);
                                TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
                            else
                                if rand<=1/G_t  %病毒突变,状态转移为易感状态S
                                    State(t,j)=0;
                                    TimeLong_E(j)=0;
                                else
                                    %此时用户状态依然不变
                                    State(t,j)=State(t-1,j);
                                    TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
                                end
                            end
                        end
                    end
                end
            end
        end
        %统计各状态的节点数量
        Number_State(1,t)=sum(State(t,:)==0);%处于易感状态S的总节点数量
        Number_State(2,t)=sum(State(t,:)==1);%处于易感状态E的总节点数量
        Number_State(3,t)=sum(State(t,:)==2);%处于易感状态I的总节点数量
        Number_State(4,t)=sum(State(t,:)==3);%处于易感状态R的总节点数量
        figure(i)
        if rem(t,3)==0
            plot([t-1 t],[Number_State(1,t-1) Number_State(1,t)],'md-'),hold on
            plot([t-1 t],[Number_State(2,t-1) Number_State(2,t)],'gh:'),hold on
            plot([t-1 t],[Number_State(3,t-1) Number_State(3,t)],'bs-.'),hold on
            plot([t-1 t],[Number_State(4,t-1) Number_State(4,t)],'k.-'),hold on
        else
            continue;
        end
        legend('易感状态Susceptible','潜伏状态Exposed','染病状态Infected','免疫状态Recovered')
        xlabel('模拟时间')
        ylabel('各状态的用户数量')
    end
end
P_m1=0.3;         %用户预免疫系数
% State=zeros(TimeStep,M);  %用户的状态  
% G_t=5;                      %G_t:用户的免疫持续时间,反映了病毒的变异频率
G_t=[1,5,9];
F_t=5;                      %F_t:用户从发现病毒到杀毒并升级病毒库的时间
for i=1:length(G_t)
    TimeLong_F=zeros(1,M); %用户处于染病期的时间长短
    TimeLong_E=zeros(1,M); %用户处于潜伏期的时间长短
    Sta=zeros(1,M);                                                      %用户的状态 
    %进行预免疫设定
    for j=1:M
        if rand(1)<=P_m1
            Sta(j)=3;         %进入免疫状态
            TimeLong_E(j)=1;  %出入潜伏期的时间为1
        else
            continue;
        end
    end
    %状态转换
    %初始随机选择一个节点为病源点(此时不能选处于免疫状态的点)
    %问题:节点度大小存在差别,可能模拟出来的结果有出于
    %      为避免这个问题,我们取度最大的节点为病源节点,如果已免疫,则选次大的,一次下去
    [Number,Sta]=Select_Infected_Point(M,Sta,De);
    %Number:病源节点
    %State :确定病源节点以后的节点状态矩阵
    State=zeros(TimeStep,M);
    Number_State=zeros(4,TimeStep);  %用户处于个状态的统计数量
    for t=1:TimeStep
        if t==1
            State(t,:)=Sta;
        else
            %模拟每个用户节点的状态
            for j=1:M
                %判断用户节点处于什么状态,然后根据其状态确定其转变情况
                if State(t-1,j)==0                          %此时处于易感状态0,可能向潜伏期转移
                    Num=Select_Number_Near(j,Link);         %找出节点j的邻居节点
                    P=zeros(1,length(Num));                 %邻居节点感染该节点的概率
                    for k=1:length(Num)
                        if State(t-1,Num(k))==1             %节点处于潜伏期E(1)
                            P(k)=I_E/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
                                (factorial([1:De(Num(k))]-1)));
                        else
                            if State(t-1,Num(k))==2          %节点处于染病期I(2)
                                P(k)=I_I/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
                                    (factorial([1:De(Num(k))]-1)));
                            else
                                continue;
                            end
                        end
                    end
                    P_0_1=max(P);                       %节点感染病毒的概率
                    if rand<=P_0_1                      %此时节点进入潜伏期
                       State(t,j)=1;
                    else
                       State(t,j)=State(t-1,j); 
                    end
                else
                    if State(t-1,j)==1          %此时处于潜伏状态E,可能向易感S,染病I和免疫R转移
                        if rand<=1/(1+exp(-De(j)))                 %向染病状态I转移                
                            State(t,j)=2;
                            TimeLong_F(j)=TimeLong_F(j)+1;         %用户j处于染病状态的时间长短  
                        else
                            if rand<=1/(1+exp(-De(j)))             %向易感状态S转移           
                                State(t,j)=0;
                            else
                                if rand<=1/(1+exp(-De(j)))         %向免疫状态R转移
                                    State(t,j)=3;
                                    TimeLong_E(j)=TimeLong_E(j)+1; %免疫时间增加1
                                else
                                    State(t,j)=State(t-1,j);       %状态不变,依然为潜伏期E(1)
                                end
                            end
                        end
                    else
                        if State(t-1,j)==2           %此时处于欺染病状态I,可能向易感S,免疫R转移
                            if TimeLong_F(j)<=F_t          %表示此时用户不对病毒进行任何处理
                                State(t,j)=State(t-1,j);           %此时用户维持在原状态I
                                TimeLong_F(j)=TimeLong_F(j)+2;
                            else
                                %此时用户对进行杀毒并升级病毒库,进入免疫状态R
                                State(t,j)=3;
                                TimeLong_F(j)=0; %处于感染期(中毒状态)的时间长度
                                TimeLong_E(j)=1; %进入免疫期的时间长度
                            end
                        else
                            %此时用户处于免疫期
                            if TimeLong_E<=G_t(i)   %病毒此时并未突变,维持原状态R(免疫状态)
                                State(t,j)=State(t-1,j);
                                TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
                            else
                                if rand<=1/G_t(i)              %病毒突变,状态转移为易感状态S
                                    State(t,j)=0;
                                    TimeLong_E(j)=0;
                                else
                                    %此时用户状态依然不变
                                    State(t,j)=State(t-1,j);
                                    TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
                                end
                            end
                        end
                    end
                end
            end
        end
        %统计各状态的节点数量
        Number_State(1,t)=sum(State(t,:)==0);%处于易感状态S的总节点数量
        Number_State(2,t)=sum(State(t,:)==1);%处于易感状态E的总节点数量
        Number_State(3,t)=sum(State(t,:)==2);%处于易感状态I的总节点数量
        Number_State(4,t)=sum(State(t,:)==3);%处于易感状态R的总节点数量
        figure(i+5)
        if rem(t,3)==0
            plot([t-1 t],[Number_State(1,t-1) Number_State(1,t)],'md-'),hold on
            plot([t-1 t],[Number_State(2,t-1) Number_State(2,t)],'gh:'),hold on
            plot([t-1 t],[Number_State(3,t-1) Number_State(3,t)],'bs-.'),hold on
            plot([t-1 t],[Number_State(4,t-1) Number_State(4,t)],'k.-'),hold on
        else
            continue;
        end
        legend('易感状态Susceptible','潜伏状态Exposed','染病状态Infected','免疫状态Recovered')
        xlabel('模拟时间')
        ylabel('各状态的用户数量')
    end
end
P_m1=0.3;                   %用户预免疫系数
% State=zeros(TimeStep,M);  %用户的状态  
% G_t=5;                      %G_t:用户的免疫持续时间,反映了病毒的变异频率
G_t=5;
F_t=[1,5,9];                        %F_t:用户从发现病毒到杀毒并升级病毒库的时间
for i=1:length(F_t)
    TimeLong_F=zeros(1,M); %用户处于染病期的时间长短
    TimeLong_E=zeros(1,M); %用户处于潜伏期的时间长短
    Sta=zeros(1,M);                                                      %用户的状态 
    %进行预免疫设定
    for j=1:M
        if rand(1)<=P_m1
            Sta(j)=3;         %进入免疫状态
            TimeLong_E(j)=1;  %出入潜伏期的时间为1
        else
            continue;
        end
    end
    %状态转换
    %初始随机选择一个节点为病源点(此时不能选处于免疫状态的点)
    %问题:节点度大小存在差别,可能模拟出来的结果有出于
    %      为避免这个问题,我们取度最大的节点为病源节点,如果已免疫,则选次大的,一次下去
    [Number,Sta]=Select_Infected_Point(M,Sta,De);
    %Number:病源节点
    %State :确定病源节点以后的节点状态矩阵
    State=zeros(TimeStep,M);
    Number_State=zeros(4,TimeStep);  %用户处于个状态的统计数量
    for t=1:TimeStep
        if t==1
            State(t,:)=Sta;
        else
            %模拟每个用户节点的状态
            for j=1:M
                %判断用户节点处于什么状态,然后根据其状态确定其转变情况
                if State(t-1,j)==0                          %此时处于易感状态0,可能向潜伏期转移
                    Num=Select_Number_Near(j,Link);         %找出节点j的邻居节点
                    P=zeros(1,length(Num));                 %邻居节点感染该节点的概率
                    for k=1:length(Num)
                        if State(t-1,Num(k))==1             %节点处于潜伏期E(1)
                            P(k)=I_E/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
                                (factorial([1:De(Num(k))]-1)));
                        else
                            if State(t-1,Num(k))==2          %节点处于染病期I(2)
                                P(k)=I_I/De(Num(k))*sum((lamda.^([1:De(Num(k))]).*exp(-lamda))./...
                                    (factorial([1:De(Num(k))]-1)));
                            else
                                continue;
                            end
                        end
                    end
                    P_0_1=max(P);                       %节点感染病毒的概率
                    if rand<=P_0_1                      %此时节点进入潜伏期
                       State(t,j)=1;
                    else
                       State(t,j)=State(t-1,j); 
                    end
                else
                    if State(t-1,j)==1      %此时处于潜伏状态E,可能向易感S,染病I和免疫R转移
                        if rand<=1/(1+exp(-De(j)))                 %向染病状态I转移                
                            State(t,j)=2;
                            TimeLong_F(j)=TimeLong_F(j)+1;         %用户j处于染病状态的时间长短  
                        else
                            if rand<=1/(1+exp(-De(j)))             %向易感状态S转移           
                                State(t,j)=0;
                            else
                                if rand<=1/(1+exp(-De(j)))         %向免疫状态R转移
                                    State(t,j)=3;
                                    TimeLong_E(j)=TimeLong_E(j)+1; %免疫时间增加1
                                else
                                    State(t,j)=State(t-1,j);       %状态不变,依然为潜伏期E(1)
                                end
                            end
                        end
                    else
                        if State(t-1,j)==2           %此时处于欺染病状态I,可能向易感S,免疫R转移
                            if TimeLong_F(j)<=F_t(i)   %表示此时用户不对病毒进行任何处理
                                State(t,j)=State(t-1,j);           %此时用户维持在原状态I
                                TimeLong_F(j)=TimeLong_F(j)+2;
                            else
                                %此时用户对进行杀毒并升级病毒库,进入免疫状态R
                                State(t,j)=3;
                                TimeLong_F(j)=0; %处于感染期(中毒状态)的时间长度
                                TimeLong_E(j)=1; %进入免疫期的时间长度
                            end
                        else
                            %此时用户处于免疫期
                            if TimeLong_E<=G_t          %病毒此时并未突变,维持原状态R(免疫状态)
                                State(t,j)=State(t-1,j);
                                TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
                            else
                                if rand<=1/G_t              %病毒突变,状态转移为易感状态S
                                    State(t,j)=0;
                                    TimeLong_E(j)=0;
                                else
                                    %此时用户状态依然不变
                                    State(t,j)=State(t-1,j);
                                    TimeLong_E(j)=TimeLong_E(j)+1; %处于免疫期的时间增加
                                end
                            end
                        end
                    end
                end
            end
        end
        %统计各状态的节点数量
        Number_State(1,t)=sum(State(t,:)==0);%处于易感状态S的总节点数量
        Number_State(2,t)=sum(State(t,:)==1);%处于易感状态E的总节点数量
        Number_State(3,t)=sum(State(t,:)==2);%处于易感状态I的总节点数量
        Number_State(4,t)=sum(State(t,:)==3);%处于易感状态R的总节点数量
        figure(i+10)
        if rem(t,3)==0
            plot([t-1 t],[Number_State(1,t-1) Number_State(1,t)],'md-'),hold on
            plot([t-1 t],[Number_State(2,t-1) Number_State(2,t)],'gh:'),hold on
            plot([t-1 t],[Number_State(3,t-1) Number_State(3,t)],'bs-.'),hold on
            plot([t-1 t],[Number_State(4,t-1) Number_State(4,t)],'k.-'),hold on
        else
            continue;
        end
        legend('易感状态Susceptible','潜伏状态Exposed','染病状态Infected','免疫状态Recovered')
        xlabel('模拟时间')
        ylabel('各状态的人口数量')
    end
end
toc


完整代码添加QQ1575304183

标签:短消息,状态,病毒传播,用户,免疫,zeros,元胞,m1
来源: https://www.cnblogs.com/ttmatlab/p/14746209.html