其他分享
首页 > 其他分享> > 一场考试 —— 数学小专场

一场考试 —— 数学小专场

作者:互联网

简要赘述

良心出题人 \(zhx\) ,暴力的分给定十分充足,足足有 \(200+\) 题目也比较水。

预计得分 : \(310\)
实际得分 : \(280\)
\(100 + 30 + 100 + 50\)
\(rank \ \ 5/83\)

T1

高精度取膜

【\(solution\)】 : 直接类比读入取模,我们用字符串储存,然后直接 \(*10\) 取模即可

signed main() {
	string s ; cin >> s ; 
	int y = read() , ret = 0; 
	for(qwq int i = 0 ; i < s.size() ; i++) 
	ret = (ret * 10 + (s[i] - '0')) % y ; 
	printf("%lld\n" , ret) ; 
 	return 0 ; 
}

T2

用 \(m\) 种不同的 \(1\times 1\) , \(2\times 2\) 的两类方块 (这两类方块都有 \(m\) 种) 用这些正方形的块来覆盖 \(2\times n\) 的长方形 。 \(n\leq 10^ 9\)

【\(solution\)】 :
我们有显然的递推式 \(f_i = m^3\times (f_{i - 1} + 2\times f_{i -2})\)

signed main() {
	n = read() , m = read() ; 
	f[0] = 1 ; f[1] = m * m * m ; 
	for(qwq int i = 2 ; i <= n ; i ++) 
	f[i] = f[i - 2] * 2 * m * m * m + f[i - 1] * m * m * m ; 
	printf("%lld\n" , f[n]) ; 
 	return 0 ;
}

我们发现 \(n\) 特别的大。并且我们发现 \(f_i\) 可以由 \(f_{i-1}\) 和 \(f_{i-2}\) 转移而来, 和斐波那契数列数列一样,我们考虑用矩阵加速。则就有

\[\begin{bmatrix} f_{i - 1} & f_{i - 2} \end{bmatrix} \ast M = \begin{bmatrix} f_{i} & f_{i - 1} \end{bmatrix} \]

则我们就能够得到

\[M = \begin{bmatrix} m^3 & 1\\ 2\times m^3 & 0 \end{bmatrix} \]

当时在考试上写矩阵加速的我,傻逼的将初始化矩阵写翻了。

\(Code\)

/*
By : Zmonarch
知识点:
*/
#include <bits/stdc++.h>
#define int long long
#define qwq register
#define inf 2147483647
using namespace std ;
const int kmaxn = 1e6 + 10 ;
const int kmod = 1e9 + 7 ;
inline int read() {
	int x = 0 , f = 1 ; char ch = getchar() ;
	while(!isdigit(ch)) {if(ch == '-') f = - 1 ; ch = getchar() ;}
	while( isdigit(ch)) {x = x * 10 + ch - '0' ; ch = getchar() ;}
	return x * f ;
}
int n , m ; 
int f[kmaxn] ; 
struct Matrix {
	int a[3][3] ; 
	Matrix() {memset(a , 0 , sizeof(a)) ;}
} ; 
// f[i] = f[i - 2] * 2 * m ^3 + f[i - 1] * m ^ 3 
Matrix operator ^ (const Matrix &m1 , const Matrix &m2) 
{
	Matrix m3 ; //m3.n = m1.n , m3.m = m2.m ; 
	for(qwq int i = 1 ; i <= 2 ; i++) 
 	 for(qwq int k = 1 ; k <= 2 ; k++) 
  	  for(qwq int j = 1 ; j <= 2 ; j++)
	     m3.a[i][j] = (m3.a[i][j] + m1.a[i][k] * m2.a[k][j]) % kmod ;
	return m3 ;
}
Matrix quick(Matrix a , int b) {
	Matrix ret ; 	
	for(qwq int i = 1 ; i <= 2 ; i++) ret.a[i][i] = 1 ;  
	while(b) 
	{
		if(b & 1) ret = ret ^ a; 
		a = a ^ a ; 
		b >>= 1 ; 
	}
	return ret ; 
}
signed main() {
	n = read() , m = read() ; 
	Matrix base ; //base.m = base.n = 2 ;
	base.a[1][1] = m % kmod * m % kmod * m % kmod ; 
 	base.a[1][2] = 1 ; 
 	base.a[2][1] = 2 * m % kmod * m % kmod * m % kmod; 
 	base.a[2][2] = 0 ; 
	Matrix ans ; 
	ans.a[1][1] = m % kmod * m % kmod * m % kmod  ; ans.a[1][2] = 1;
	ans = ans ^ quick(base , n - 1) ;
	printf("%lld\n" , ans.a[1][1]) ;   
	return 0 ;
}


T3

求解 \(x^{C_{n}^m} \ \ mod \ \ 1000003471\)

https://images.cnblogs.com/cnblogs_com/Silymtics/1892671/o_210503101023T3.png
哈哈哈,从 \(szt\) 那里嫖来的。

【\(solution\)】:
我们用 \(mod = 1000003471\) 写这个数太麻烦了,以 \(mod\) 代表一下。
我们发现 \(mod\) 是一个质数,我们就能知道我们可以用欧拉定理优化一波
\(x^{C_{n}^{m} \ \ mod \ \ \varphi(mod)}\)
\(\varphi(mod)\) 我们发现这玩意不是个质数。

两种方法

std 干得

我干得

/*
By : Zmonarch
知识点:欧拉定理,扩展卢卡斯定理
*/	
#include <bits/stdc++.h>
#define int long long
#define qwq register
#define inf 2147483647
using namespace std ;
const int kmaxn = 1e6 + 10 ;
const int kmod = 1000003471 ;
inline int read() {
	int x = 0 , f = 1 ; char ch = getchar() ;
	while(!isdigit(ch)) {if(ch == '-') f = - 1 ; ch = getchar() ;}
	while( isdigit(ch)) {x = x * 10 + ch - '0' ; ch = getchar() ;}
	return x * f ;
}
int tot ; 
int c[kmaxn] , d[kmaxn] , b[kmaxn]; 
/*int eular(int p) {
	int phi = p ; 
	for(int i = 2 ; i <= sqrt(p) ; i++) 
	{
		if(p % i == 0) 
		{
			phi = phi / i * (i - 1) ;
			while(p % i == 0) p /= i ; 
		}
	}
	if(p > 1) phi = phi / p * (p - 1) ; 
	return phi ; 
}*/
inline int Qpow(int a,int b, qwq int mod) {
	int ans = 1;
	while (b) {
		if (b & 1) ans = ans * a % mod;
		a = a * a % mod;
		b >>= 1;
	}
	return ans;
}
inline int ExGCD (int a, int b, int &x, int &y) {
	if (!b) {x = 1, y = 0;return a ;}
	int d = ExGCD (b, a % b, x, y);
	int tmp = x;
	x = y;
	y = tmp - (a / b) * y;
	return d;
}
inline int Inv (int a, int mod) { 
	int x = 0, y = 0;
	ExGCD (a, mod, x, y);
	return (x % mod + mod) % mod;
}
inline int Calc (int n, int p, int pk) {
	if (n == 0) return 1;
	int ans = 1;
	for (qwq int i = 1; i <= pk; i ++) 
	if (i % p) ans = ans * i % pk;
	ans = Qpow (ans, n / pk, pk); 
	for (qwq int i = 1; i <= n % pk; i ++) 
    	if (i % p) ans = ans * i % pk;
	return ans * Calc (n / p, p, pk) % pk;
}
inline int C (int n, int m, int p, int pk) {
	if (n == 0 || m == 0 || n == m) return 1;
	if (n < m) return 0;
	int nn = Calc (n, p, pk), mm = Calc (m, p, pk), nm = Calc (n - m, p, pk), cnt = 0, k = n - m;
	while (n) n /= p, cnt += n;
	while (m) m /= p, cnt -= m;
	while (k) k /= p, cnt -= k;
	return nn * Inv (mm, pk) % pk * Inv (nm, pk) % pk * Qpow (p, cnt, pk) % pk;
}
inline int CRT () { 
	int M = 1, ans = 0;
	for (qwq int i = 1; i <= tot; i ++) M *= c[i];
	for (qwq int i = 1; i <= tot; i ++) d[i] = Inv (M / c[i], c[i]);
	for (qwq int i = 1; i <= tot; i ++) ans += b[i] * (M / c[i])  * d[i];
	return (ans % M + M) % M;
}
inline int ExLucas (int n, int m, int p) {
	int tmp = sqrt (p);
	for (qwq int i = 2; i <= tmp && p >= 1; i ++) 
	{ 
		int pk = 1;
		while (p % i == 0) p /= i, pk *= i;
		if (pk > 1) b[++ tot] = C (n, m, i, pk), c[tot] = pk;
	}
	if (p > 1) b[++ tot] = C (n, m, p, p), c[tot] = p;
	return CRT() ; 
}
signed main() {
	//int p = Eular(kmod) ; 我为什么还要筛一遍
	int p = kmod - 1; //质数的话就是 \varphi(n) = n - 1 
	int x = read() , n = read() , m = read() ; 
	int k = ExLucas(n , m , p) ; // C(n ,m) % p  
	//printf("%lld\n" ,k) ; 
	int ret = Qpow(x , k , kmod) ; 
	printf("%lld" , ret) ; 
 	return 0 ;
}

T4

给定 \(n\) 个数 \(a_i\),求解使得 \(a_i = \gcd(x , y + i - 1)\) 成立的任意 \(x,y\) 、

【\(solution\)】 ;

int gcd(int a , int b){ return !b ? a : gcd(b , a % b) ;}
signed main() {
	
	int n = read() ; 
	if(n == 1) { int  num = read() ; printf("%lld %lld" , num , num) ;  ; return 0 ; }
	for(qwq int i = 1 ; i <= n ; i++) a[i] = read() ; 
	for(qwq int i = 1 ; i <= n ; i++) 
	{
		for(qwq int x = 1 ; x <= 10 ; x++) 
		{
			for(qwq int y = 1 ; y <= 10 ; y++) 
			{
				if(a[i] == gcd(x , y + i - 1)) 
				{
					printf("%lld %lld" , x , y) ; 
					return 0 ; 
				}
			}
		}
	}
 	return 0 ;
}

\[(y + i - 1) \equiv 0 (mod \ \ a_i) \]

\[y \equiv n + 1 - i (mod \ \ a_i) \]

我们发现这玩意是个 \(excrt\) , 模板莽上。

这里选择用大数翻倍法 : \(1.\) 好写, \(2.\) 没写过,练一下。

/*
By : Zmonarch
知识点:
*/
#include <bits/stdc++.h>
#define int long long
#define qwq register
#define inf 2147483647
using namespace std ;
const int kmaxn = 1e6 + 10 ;
const int kmod = 98244353 ;
inline int read() {
	int x = 0 , f = 1 ; char ch = getchar() ;
	while(!isdigit(ch)) {if(ch == '-') f = - 1 ; ch = getchar() ;}
	while( isdigit(ch)) {x = x * 10 + ch - '0' ; ch = getchar() ;}
	return x * f ;
}
int a[kmaxn] ; 
int gcd(int a , int b){ return !b ? a : gcd(b , a % b) ;}
void merge(int &n1 , int &m1 , int n2 , int m2) {
	if(m1 < m2) swap(m1 , m2) , swap(m1 , m2) ; 
	while(n1 % m2 != n2) n1 += m1 ; 
	m1 = m1 / gcd(m1 , m2) * m2 ; 
}
signed main() {
	
	int n = read() ; 
	for(qwq int i = 1 ; i <= n ; i++) a[i] = read() ; 
	int x = 1 ; 
	for(qwq int i = 1 ; i <= n ; i++) 
	x = x / gcd(x , a[i]) * a[i] ; 
	int n1 = 0 , m1 = 1 ; 
	for(qwq int i = 1 ; i <= n ; i++) 
	{
		int n2 = ((1 - i) % a[i] + a[i]) % a[i] ; 
		int m2 = a[i] ; 
		merge(n1 , m1 , n2 , m2) ; 
	}
	printf("%lld %lld\n" , x , n1) ; 
 	return 0 ;
}


Std

钟神的代码确定不要一下吗?

\(T1\)

#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
int m;
char s[100010];
int main()
{
	scanf("%s",s+1);
	scanf("%d",&m);
	int l=strlen(s+1);
	long long ans=0;
	for (int a=1;a<=l;a++)
		ans=(ans*10+s[a]-'0')%m;
	printf("%lld\n",ans);
	return 0;
}

\(T2\)

#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
const int mo=1000000007;
int n,m;
struct matrix
{
	int z[2][2];
	matrix()
	{
		memset(z,0,sizeof(z));
	}
}m1,m2;
matrix operator*(const matrix &m1,const matrix &m2)
{
	matrix m3;
	for (int a=0;a<2;a++)
		for (int b=0;b<2;b++)
			for (int c=0;c<2;c++)
				m3.z[a][c] =(m3.z[a][c]+1ll*m1.z[a][b]*m2.z[b][c])%mo;
	return m3;
}
int main()
{
	scanf("%d%d",&n,&m);
	if (n==1) printf("%lld\n",1ll*m*m%mo*m%mo);
	else
	{
		m1.z[0][0]=1;
		m1.z[0][1]=1ll*m*m%mo*m%mo;
		m2.z[0][0]=0;m2.z[1][0]=1;
		m2.z[0][1]=2ll*m*m%mo*m%mo;
		m2.z[1][1]=1ll*m*m%mo*m%mo;
		while (n)
		{
			if (n&1) m1=m1*m2;
			m2=m2*m2;
			n>>=1;
		}
		printf("%d\n",m1.z[0][0]);
	}
	return 0;
}

\(T3\)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int mo=1000003471;
int pcnt,plist[10];
int x,n,m,C[1000][1000];
int gcd(int a,int b)
{
	if (!b) return a;
	else return gcd(b,a%b);
}
int pow(int a,int b,int mo)
{
	int ans=1;
	while (b)
	{
		if (b&1) ans=1ll*ans*a%mo;
		a=1ll*a*a%mo;
		b>>=1;
	}
	return ans;
}
int get(int n,int m,int p)
{
	C[0][0]=1;
	for (int a=1;a<p;a++)
	{
		C[a][0]=1;
		for (int b=1;b<=a;b++)
		{
			C[a][b]=C[a-1][b-1]+C[a-1][b];
			if (C[a][b]>=p) C[a][b]-=p;
		}
	}
	int ans=1;
	while (n!=0 || m!=0)
	{
		ans=1ll*ans*C[n%p][m%p]%p;
		n/=p;
		m/=p;
	}
	return ans;
}
void merge(int &v1,int &m1,int v2,int m2)
{
	if (m1<m2) swap(v1,v2),swap(m1,m2);
	while (v1%m2!=v2)
		v1+=m1;
	m1=m1/gcd(m1,m2)*m2;
}
int work(int n,int m)
{
	int v1=0,n1=1;
	for (int a=1;a<=pcnt;a++)
	{
		int v2=get(n,m,plist[a]),n2=plist[a];
		merge(v1,n1,v2,n2);
	}
	return v1;
}
int main()
{
	int v=mo-1;
	for (int a=2;a<=v;a++)
		if (v%a==0)
		{
			plist[++pcnt]=a;
			while (v%a==0)
				v/=a;
		}
	scanf("%d%d%d",&x,&n,&m);
	printf("%d\n",pow(x,work(n,m),mo));
	return 0;
}

\(T4\)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int n,z[1010];
int gcd(int a,int b)
{
	if (!b) return a;
	else return gcd(b,a%b);
}
void merge(int &v1,int &m1,int v2,int m2)
{
	if (m1<m2) swap(v1,v2),swap(m1,m2);
	while (v1%m2!=v2)
		v1+=m1;
	m1=m1/gcd(m1,m2)*m2;
}
int main()
{
	scanf("%d",&n);
	for (int a=1;a<=n;a++)
		scanf("%d",&z[a]);
	int x=1;
	for (int a=1;a<=n;a++)
		x=x/gcd(x,z[a])*z[a];
	int v1=0,m1=1;
	for (int a=1;a<=n;a++)
	{
		int v2=((1-a)%z[a]+z[a])%z[a];
		int m2=z[a];
		merge(v1,m1,v2,m2);
	}
	printf("%d %d\n",x,v1);
	return 0;
}

标签:专场,ch,return,int,数学,ans,include,考试,mod
来源: https://www.cnblogs.com/Zmonarch/p/14728139.html