其他分享
首页 > 其他分享> > 2021-04-05

2021-04-05

作者:互联网

## **多表练习**

![img](https://pic1.zhimg.com/80/v2-943e3c507bb66832445e887246ca2f20_720w.jpg)

**SQL Lesson 6: 用JOINs进行多表联合查询**

Table: Movies (Read-Only)

| Id   | Title               | Director       | Year | Length_minutes |
| ---- | ------------------- | -------------- | ---- | -------------- |
| 1    | Toy Story           | John Lasseter  | 1995 | 81             |
| 2    | A Bug's Life        | John Lasseter  | 1998 | 95             |
| 3    | Toy Story 2         | John Lasseter  | 1999 | 93             |
| 4    | Monsters, Inc.      | Pete Docter    | 2001 | 92             |
| 5    | Finding Nemo        | Finding Nemo   | 2003 | 107            |
| 6    | The Incredibles     | Brad Bird      | 2004 | 116            |
| 7    | Cars                | John Lasseter  | 2006 | 117            |
| 8    | Ratatouille         | Brad Bird      | 2007 | 115            |
| 9    | WALL-E              | Andrew Stanton | 2008 | 104            |
| 10   | Up                  | Pete Docter    | 2009 | 101            |
| 11   | Toy Story 3         | Lee Unkrich    | 2010 | 103            |
| 12   | Cars 2              | John Lasseter  | 2011 | 120            |
| 13   | Brave               | Brenda Chapman | 2012 | 102            |
| 14   | Monsters University | Dan Scanlon    | 2013 | 110            |

Table: Boxoffice (Read-Only)

| Movie_id | Rating | Domestic_sales | International_sales |
| -------- | ------ | -------------- | ------------------- |
| 5        | 8.2    | 380843261      | 555900000           |
| 14       | 7.4    | 268492764      | 475066843           |
| 8        | 8      | 206445654      | 417277164           |
| 12       | 6.4    | 191452396      | 368400000           |
| 3        | 7.9    | 245852179      | 239163000           |
| 6        | 8      | 261441092      | 370001000           |
| 9        | 8.5    | 223808164      | 297503696           |
| 11       | 8.4    | 415004880      | 648167031           |
| 1        | 8.3    | 191796233      | 170162503           |
| 7        | 7.2    | 244082982      | 217900167           |
| 10       | 8.3    | 293004164      | 438338580           |
| 4        | 8.1    | 289916256      | 272900000           |
| 2        | 7.2    | 162798565      | 200600000           |
| 13       | 7.2    | 237283207      | 301700000           |

Table(表): Movies 全表查看

| Id   | Title               | Director       | Year | Length_minutes |
| ---- | ------------------- | -------------- | ---- | -------------- |
| 1    | Toy Story           | John Lasseter  | 1995 | 81             |
| 2    | A Bug's Life        | John Lasseter  | 1998 | 95             |
| 3    | Toy Story 2         | John Lasseter  | 1999 | 93             |
| 4    | Monsters, Inc.      | Pete Docter    | 2001 | 92             |
| 5    | Finding Nemo        | Finding Nemo   | 2003 | 107            |
| 6    | The Incredibles     | Brad Bird      | 2004 | 116            |
| 7    | Cars                | John Lasseter  | 2006 | 117            |
| 8    | Ratatouille         | Brad Bird      | 2007 | 115            |
| 9    | WALL-E              | Andrew Stanton | 2008 | 104            |
| 10   | Up                  | Pete Docter    | 2009 | 101            |
| 11   | Toy Story 3         | Lee Unkrich    | 2010 | 103            |
| 12   | Cars 2              | John Lasseter  | 2011 | 120            |
| 13   | Brave               | Brenda Chapman | 2012 | 102            |
| 14   | Monsters University | Dan Scanlon    | 2013 | 110            |

1. 找到所有电影的国内`Domestic_sales`和国际销售额

```sql
SELECT * FROM movies
inner join Boxoffice
on  Movies.id=Boxoffice.Movie_id
```

\2. 找到所有国际销售额比国内销售大的电影

```sql
SELECT * FROM movies
inner join Boxoffice
on  Movies.id=Boxoffice.Movie_id
where International_sales > Domestic_sales
```

\3. 找出所有电影按市场占有率`rating`倒序排列

```sql
SELECT * FROM movies
inner join Boxoffice
on  Movies.id=Boxoffice.Movie_id
order by Rating desc    
```

\4. 每部电影按国际销售额比较,排名最靠前的导演是谁,线上销量多少

```sql
SELECT Director,International_sales FROM movies
inner join Boxoffice
on  Movies.id=Boxoffice.Movie_id
order by International_sales desc limit 1  
```

**SQL Lesson 7: 外连接(OUTER JOINs)**

1. 找到所有有雇员的办公室(`buildings`)名字

```sql
SELECT DISTINCT building FROM employees WHERE Building
```

\2. 找到所有办公室和它们的最大容量

```sql
SELECT * FROM Buildings
```

\3. 找到所有办公室里的所有角色(包含没有雇员的),并做唯一输出(`DISTINCT`)

```sql
SELECT DISTINCT Building_name, Role 
FROM Buildings 
LEFT JOIN Employees
ON Buildings.Building_name = Employees.Building;
```

\4. 找到所有有雇员的办公室(`buildings`)和对应的容量

```sql
SELECT  DISTINCT Building,Capacity FROM Employees INNER JOIN  Buildings
ON employees.Building=Buildings.Building_name;
```

**SQL Lesson 8: 关于特殊关键字 NULLs**

1. 找到雇员里还没有分配办公室的(列出名字和角色就可以)

```sql
SELECT Role, Name FROM Employees 
WHERE Building IS NULL;
```

\2. 找到还没有雇员的办公室

```sql
SELECT DISTINCT Building_name
FROM Buildings LEFT JOIN Employees
ON Building_name = Building
WHERE Role IS NULL;
```

**SQL Lesson 9: 在查询中使用表达式**

1. 列出所有的电影ID,名字和销售总额(以百万美元为单位计算)

```sql
SELECT Id,Title,
(b.domestic_sales+b.international_sales)/1000000 AS Total
FROM Movies m
LEFT JOIN Boxoffice b
ON m.id=b.movie_id;
```

\2. 列出所有的电影ID,名字和市场指数(`Rating`的10倍为市场指数)

```sql
SELECT Id,Title,Rating*10 AS Market_indices
FROM Movies m
LEFT JOIN Boxoffice b
ON m.id=b.movie_id;
```

\3. 列出所有偶数年份的电影,需要电影ID,名字和年份

```sql
SELECT Id,Title,Year
FROM Movies
WHERE Year%2=0
```

\4. John Lasseter导演的每部电影每分钟值多少钱,告诉我最高的3个电影名和价值就可以

```sql
SELECT Title,(b.Domestic_sales+b.International_sales)/m.Length_minutes 
AS Per_sales
FROM Movies m LEFT JOIN Boxoffice b on m.Id=b.Movie_id 
WHERE Director='John Lasseter'
ORDER BY Per_sales DESC LIMIT 3
```

\5. 电影名最长的3部电影和他们的总销量是多少,使用函数(length())

```sql
SELECT m.title,length(Title),
(b.domestic_sales+b.international_sales) as Sum_sales
FROM Movies m
LEFT JOIN Boxoffice b
ON m.id=b.movie_id
ORDER BY length(Title) DESC
LIMIT 3;
```

**SQL Lesson 10: 在查询中进行统计I (Pt. 1),常用函数有count,MAX,MIN,AVG,SUM**

1. 找出就职年份最高的雇员(列出雇员名字+年份)

```sql
SELECT Name, MAX(Years_employed) FROM Employees; 
```

\2. 按角色(`Role`)统计一下每个角色的平均就职年份

```sql
SELECT Role,AVG(Years_employed) 
FROM Employees GROUP BY Role; 
```

\3. 按办公室名字总计一下就职年份总和

```sql
SELECT Building, SUM(Years_employed) 
FROM Employees GROUP BY Building;
```

\4. 每栋办公室按人数排名,不要统计无办公室的雇员

```sql
SELECT Building,COUNT(*) 
FROM Employees 
WHERE Building GROUP BY Building;
```

\5. 就职1,3,5,7年的人分别占总人数的百分比率是多少(给出年份和比率"50%" 记为 50)

```sql
SELECT Years_employed,count()*100 /
(SELECT count(Name) FROM Employees) as Ratio
FROM employees
WHERE Years_employed in(1,3,5,7)
GROUP BY Years_employed
```

**SQL Lesson 11: 在查询中进行统计II (Pt. 2)**

1. 统计一下Artist角色的雇员数量

```sql
SELECT COUNT() FROM Employees WHERE Role='Artist';
```

\2. 按角色统计一下每个角色的雇员数量

```sql
SELECT Role, COUNT() FROM Employees GROUP BY Role;
```

\3. 计算出Engineer角色的就职年份总计

```sql
SELECT SUM(Years_employed) FROM Employees 
WHERE Role='Engineer';
```

\4. 按角色分组算出每个角色按有办公室和没办公室的统计人数(列出角色,数量,有无办公室,注意一个角色如果部分有办公室,部分没有需分开统计)

```sql
SELECT Role,CASE when Building is NOT NULL 
THEN '1' ELSE '0' END
AS Have,COUNT(Name)
FROM Employees
GROUP BY Role,Have;
```

\5. 按角色和就职年份统计人数,年份按0-3,3-6,6-9这种阶梯分组,最后按角色+阶梯分组排序

```sql
SELECT Role,Years_employed/3 AS Year,
COUNT(Name) FROM Employees
GROUP BY Role,Year 
ORDER BY Year ASC;
```

**SQL Lesson 12: 查询执行顺序**

1. 统计出每一个导演的电影数量(列出导演名字和数量)

```sql
SELECT Director,COUNT(Title) 
FROM Movies GROUP BY Director;
```

\2. 统计一下每个导演的销售总额(列出导演名字和销售总额)

```sql
SELECT Director,SUM(b.Domestic_sales+b.International_sales)
AS Sum_Sales
FROM Movies m LEFT JOIN Boxoffice b 
ON m.Id = b.Movie_id
GROUP BY Director;
```

\3. 按导演分组计算销售总额,求出平均销售额冠军(统计结果过滤掉只有单部电影的导演,列出导演名,总销量,电影数量,平均销量)

```sql
SELECT director,SUM(b.domestic_sales+b.international_sales)
as Sum_sales,
count(title) as Total,
sum(b.domestic_sales+b.international_sales)/count(title) 
AS average FROM Movies m
LEFT JOIN Boxoffice b
ON m.Id = b.Movie_id
GROUP BY Director
HAVING COUNT(Title) > 1
ORDER BY Average DESC
LIMIT 1;
```

\4. 找出每部电影和单部电影销售冠军之间的销售差,列出电影名,销售额差额

```sql
SELECT Title, (SELECT MAX(Domestic_sales+International_sales) 
FROM Boxoffice) - SUM(Domestic_sales+International_sales) 
AS Diff FROM Movies INNER JOIN Boxoffice 
ON Movies.ID = Boxoffice.Movie_id 
GROUP BY Title; 
```

标签:Building,04,05,sales,Boxoffice,2021,sql,id,SELECT
来源: https://blog.csdn.net/weixin_45244707/article/details/115448030