其他分享
首页 > 其他分享> > 三点定圆推导公式

三点定圆推导公式

作者:互联网

不共线的三个点可以确定一个圆。

下图是用Graph画的一个很粗糙的图片用于方便理解。
紫色的线分别为AB的中垂线和AC的中垂线。
两个中垂线的交点就是圆心。
圆心到三个点的距离都相等。
三点定圆

推导公式

参考博客:三点确定一个圆的计算方法

设圆心坐标O为 ( x 0 , y 0 ) (x_0, y_0) (x0​,y0​),半径为r
三个点的坐标分别是,A ( x 1 , y 1 ) (x_1, y_1) (x1​,y1​),B ( x 2 , y 2 ) (x_2, y_2) (x2​,y2​),C ( x 3 , y 3 ) (x_3, y_3) (x3​,y3​)

三个点到圆心的距离相等

{ ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 = r 2 ( x 2 − x 0 ) 2 + ( y 2 − y 0 ) 2 = r 2 ( x 3 − x 0 ) 2 + ( y 3 − y 0 ) 2 = r 2 \left\{ \begin{array}{c} (x_1−x_0)^2+(y_1−y_0)^2=r^2 \\ \\ (x_2−x_0)^2+(y_2−y_0)^2=r^2 \\ \\ (x_3−x_0)^2+(y_3−y_0)^2=r^2 \end{array} \right. ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧​(x1​−x0​)2+(y1​−y0​)2=r2(x2​−x0​)2+(y2​−y0​)2=r2(x3​−x0​)2+(y3​−y0​)2=r2​
化简得到:
( x 1 − x 2 ) x 0 + ( y 1 − y 2 ) y 0 = ( x 1 2 − x 2 2 ) − ( y 2 2 − y 1 2 ) 2 (x_1-x_2)x_0 + (y_1-y_2)y_0 = \frac{(x_1^2-x_2^2)-(y_2^2-y_1^2)}{2} (x1​−x2​)x0​+(y1​−y2​)y0​=2(x12​−x22​)−(y22​−y12​)​
( x 1 − x 3 ) x 0 + ( y 1 − y 3 ) y 0 = ( x 1 2 − x 3 2 ) − ( y 3 2 − y 1 2 ) 2 (x_1-x_3)x_0 + (y_1-y_3)y_0 = \frac{(x_1^2-x_3^2)-(y_3^2-y_1^2)}{2} (x1​−x3​)x0​+(y1​−y3​)y0​=2(x12​−x32​)−(y32​−y12​)​

使用克拉默法则对行列式求解
∣ A ∣ = ∣ ( x 1 − x 2 ) ( y 1 − y 2 ) ( x 1 − x 3 ) ( y 1 − y 3 ) ∣ \begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} (x_1-x_2) & (y_1-y_2) \\ \\ (x_1-x_3) & (y_1-y_3) \\ \end{vmatrix} ∣∣​A​∣∣​=∣∣∣∣∣∣​(x1​−x2​)(x1​−x3​)​(y1​−y2​)(y1​−y3​)​∣∣∣∣∣∣​

∣ b ∣ = ∣ ( x 1 2 − x 2 2 ) − ( y 2 2 − y 1 2 ) 2 ( x 1 2 − x 3 2 ) − ( y 3 2 − y 1 2 ) 2 ∣ \begin{vmatrix} b \end{vmatrix} = \begin{vmatrix} \cfrac{(x_1^2-x_2^2)-(y_2^2-y_1^2)}{2} \\ \\ \cfrac{(x_1^2-x_3^2)-(y_3^2-y_1^2)}{2} \\ \end{vmatrix} ∣∣​b​∣∣​=∣∣∣∣∣∣∣∣∣​2(x12​−x22​)−(y22​−y12​)​2(x12​−x32​)−(y32​−y12​)​​∣∣∣∣∣∣∣∣∣​

∣ A 1 ∣ = ∣ ( x 1 2 − x 2 2 ) − ( y 2 2 − y 1 2 ) 2 ( y 1 − y 2 ) ( x 1 2 − x 3 2 ) − ( y 3 2 − y 1 2 ) 2 ( y 1 − y 3 ) ∣ \begin{vmatrix} A_1 \end{vmatrix} = \begin{vmatrix} \cfrac{(x_1^2-x_2^2)-(y_2^2-y_1^2)}{2} & (y_1-y_2) \\ \\ \cfrac{(x_1^2-x_3^2)-(y_3^2-y_1^2)}{2} & (y_1-y_3) \\ \end{vmatrix} ∣∣​A1​​∣∣​=∣∣∣∣∣∣∣∣∣​2(x12​−x22​)−(y22​−y12​)​2(x12​−x32​)−(y32​−y12​)​​(y1​−y2​)(y1​−y3​)​∣∣∣∣∣∣∣∣∣​

∣ A 2 ∣ = ∣ ( x 1 − x 2 ) ( x 1 2 − x 2 2 ) − ( y 2 2 − y 1 2 ) 2 ( x 1 − x 3 ) ( x 1 2 − x 3 2 ) − ( y 3 2 − y 1 2 ) 2 ∣ \begin{vmatrix} A_2 \end{vmatrix} = \begin{vmatrix} (x_1-x_2) & \cfrac{(x_1^2-x_2^2)-(y_2^2-y_1^2)}{2} \\ \\ (x_1-x_3) & \cfrac{(x_1^2-x_3^2)-(y_3^2-y_1^2)}{2} \\ \end{vmatrix} ∣∣​A2​​∣∣​=∣∣∣∣∣∣∣∣∣​(x1​−x2​)(x1​−x3​)​2(x12​−x22​)−(y22​−y12​)​2(x12​−x32​)−(y32​−y12​)​​∣∣∣∣∣∣∣∣∣​

x 1 = ∣ A 1 ∣ ∣ A ∣ x_1 = \cfrac{\begin{vmatrix}A_1\end{vmatrix}}{\begin{vmatrix}A\end{vmatrix}} x1​=∣∣​A​∣∣​∣∣​A1​​∣∣​​ ,   x 2 = ∣ A 2 ∣ ∣ A ∣ x_2 = \cfrac{\begin{vmatrix}A_2\end{vmatrix}}{\begin{vmatrix}A\end{vmatrix}} x2​=∣∣​A​∣∣​∣∣​A2​​∣∣​​


a = x 1 − x 2 b = y 1 − y 2 ; c = x 1 − x 3 ; d = y 1 − y 3 ; e = ( x 1 2 − x 2 2 ) − ( y 2 2 − y 1 2 ) 2 f = ( x 1 2 − x 3 2 ) − ( y 3 2 − y 1 2 ) 2 a = x_1 - x_2 \\ b = y_1 - y_2; \\ c = x_1 - x_3; \\ d = y_1 - y_3; \\ e = \cfrac{(x_1^2-x_2^2)-(y_2^2-y_1^2)}{2} \\ f = \cfrac{(x_1^2-x_3^2)-(y_3^2-y_1^2)}{2} a=x1​−x2​b=y1​−y2​;c=x1​−x3​;d=y1​−y3​;e=2(x12​−x22​)−(y22​−y12​)​f=2(x12​−x32​)−(y32​−y12​)​


x = e d − f c a d − b c x = \cfrac{ed-fc}{ad-bc} x=ad−bced−fc​
y = a f − c e a d − b c y = \cfrac{af-ce}{ad-bc} y=ad−bcaf−ce​

void function(double x1, double y1, double x2, double y2, double x3, double y3){
	double a = x1 - x2;
	double b = y1 - y2;
	double c = x1 - x3;
	double d = y1 - y3;
	double e = ((x1*x1-x2*x2)-(y2*y2-y1*y1))/2;
	double f = ((x1*x1-x3*x3)-(y3*y3-y1*y1))/2;
	
	// 圆心位置 
	x = (e*d - f*c)/(a*d - b*c);
	y = (a*f - c*e)/(a*d - b*c);
}

标签:三点,begin,end,推导,定圆,cfrac,vmatrix,y1,x1
来源: https://blog.csdn.net/qq_45874328/article/details/114934147