其他分享
首页 > 其他分享> > 线性系统粗浅认识——第三次作业

线性系统粗浅认识——第三次作业

作者:互联网

线性系统粗浅认识——第三次作业


声明:本人特别菜,不研究相关的方向,差点挂科,这个作业的内容仅供交流。

第三次作业

作业1

题目

若 z z z是 X X X的子空间, A A A为方阵,对任意 x ∈ z x \in z x∈z, A x ∈ z Ax \in z Ax∈z ,则称 是 的A不变子空间,补齐例子中的所有内容

作业1解答_例子

X X X三维空间, z z z是 X X X的三维子空间,基底
( 1 1 0 ) \begin{pmatrix} 1\\1\\0\end{pmatrix} ⎝⎛​110​⎠⎞​ ( 0 1 0 ) \begin{pmatrix} 0\\1\\0\end{pmatrix} ⎝⎛​010​⎠⎞​, z z z的任意一个元素 x = α ( 1 1 0 ) + β ( 0 1 0 ) x = \alpha \left( {\begin{matrix} 1\\ 1\\ 0 \end{matrix}} \right) + \beta \left({\begin{matrix} 0\\ 1\\ 0 \end{matrix}} \right) x=α⎝⎛​110​⎠⎞​+β⎝⎛​010​⎠⎞​
A = [ 2 3 0 − 1 1 0 0 0 1 ] A = \left[ {\begin{matrix}{} 2&3&0\\ { - 1}&1&0\\ 0&0&1 \end{matrix}} \right] A=⎣⎡​2−10​310​001​⎦⎤​

A x = ( 2 3 0 − 1 1 0 0 0 1 ) × α ( 1 1 0 ) + ( 2 3 0 − 1 1 0 0 0 1 ) × β ( 0 1 0 ) = α ( 5 0 0 ) + β ( 3 1 0 ) = ( 5 α + 3 β ) ( 1 1 0 ) + ( − 5 α − 2 β ) ( 0 1 0 ) \begin{matrix}{} Ax = \left( {\begin{matrix}{} 2&3&0\\ { - 1}&1&0\\ 0&0&1 \end{matrix}} \right) \times \alpha \left( {\begin{matrix}{} 1\\ 1\\ 0 \end{matrix}} \right) + \left( {\begin{matrix}{} 2&3&0\\ { - 1}&1&0\\ 0&0&1 \end{matrix}} \right) \times \beta \left( {\begin{matrix}{} 0\\ 1\\ 0 \end{matrix}} \right)\\ = \alpha \left( {\begin{matrix}{} 5\\ 0\\ 0 \end{matrix}} \right) + \beta \left( {\begin{matrix}{} 3\\ 1\\ 0 \end{matrix}} \right)\\ = (5\alpha + 3\beta )\left( {\begin{matrix}{} 1\\ 1\\ 0 \end{matrix}} \right) + ( - 5\alpha - 2\beta )\left( {\begin{matrix}{} 0\\ 1\\ 0 \end{matrix}} \right) \end{matrix} Ax=⎝⎛​2−10​310​001​⎠⎞​×α⎝⎛​110​⎠⎞​+⎝⎛​2−10​310​001​⎠⎞​×β⎝⎛​010​⎠⎞​=α⎝⎛​500​⎠⎞​+β⎝⎛​310​⎠⎞​=(5α+3β)⎝⎛​110​⎠⎞​+(−5α−2β)⎝⎛​010​⎠⎞​​

作业2

题目:证明必要性

{ A , B } \left\{ {A,B} \right\} {A,B}完全能控 完全等价于的所有列不属于任意一个 的真线性不变子空间,给出简单例子并加以说明。

分析

证明该命题的必要性比较复杂,由于原命题和原命题的逆否命题是等价的,因此我改证原命题的逆否命题。

证明

逆否命题:如果 { A , B } \left\{ {A,B} \right\} {A,B}不完全能控,就有 B B B的所有列属于一个存在的 A A A的真线性不变子空间。
{ A , B } \left\{ {A,B} \right\} {A,B}不完全能控,可以得到 [ B , A B , ⋯   , A n − 1 B ] [B,AB, \cdots ,{A^{n - 1}}B] [B,AB,⋯,An−1B]非行满秩
存在非零向量 w w w,使 w [ B , A B , ⋯   , A n − 1 B ] = 0 w[B,AB, \cdots ,{A^{n - 1}}B] = 0 w[B,AB,⋯,An−1B]=0
所以 w B = 0 wB = 0 wB=0,所以 r a n k [ B ] < n rank[B] < n rank[B]<n
A A A 的特征根的 λ 1 , λ 2 , ⋯ λ n {\lambda _{\rm{1}}},{\lambda _2}, \cdots {\lambda _n} λ1​,λ2​,⋯λn​, A A A的特征向量是 v 1 , v 2 , ⋯ v n {v_{\rm{1}}},{v_2}, \cdots {v_n} v1​,v2​,⋯vn​,多输入系统 B B B的向量,
B = [ b 1 ⋯ b m ] b 1 = α 11 v 1 + ⋯ + α 1 k v k ⋮ b m = α m 1 v 1 + ⋯ + α m k v k B = \left[ {\begin{matrix}{} {{b_1}}& \cdots &{{b_m}} \end{matrix}} \right]\\ {b_1} = {\alpha _{11}}{v_1} + \cdots + {\alpha _{1k}}{v_k}\\ \vdots \\ {b_m} = {\alpha _{m1}}{v_1} + \cdots + {\alpha _{mk}}{v_k} B=[b1​​⋯​bm​​]b1​=α11​v1​+⋯+α1k​vk​⋮bm​=αm1​v1​+⋯+αmk​vk​

其中 k < n k < n k<n, v 1 , v 2 , ⋯ v k {v_{\rm{1}}},{v_2}, \cdots {v_k} v1​,v2​,⋯vk​张成了一个线性空间 A ′ A' A′, A ′ A' A′ 是 A A A的真线性不变子空间
所以 B B B 的所有列属于一个存在的 A A A的真线性不变子空间。
所以逆否命题为真,因此,该命题为真。

直接证明:

设矩阵 A A A 的一组特征向量为 v 1 , v 2 , ⋯ v n {v_{\rm{1}}},{v_2}, \cdots {v_n} v1​,v2​,⋯vn​, B B B 的所有列不属于任意一个 A A A 的特征向量张成的真线性不变子空间,即 B B B的基底可以表示为 { v 1 , v 2 , ⋯ v n , v n + 1 , ⋯ v k } \{ {v_{\rm{1}}},{v_2}, \cdots {v_n},{v_{n + 1}}, \cdots {v_k}\} {v1​,v2​,⋯vn​,vn+1​,⋯vk​}其中 k > n k > n k>n设 B B B的输入为 m m m维也就是说 B B B可以表示为
B = [ b 1 ⋯ b m ] b 1 = α 11 v 1 + ⋯ + α 1 k v k ⋮ b m = α m 1 v 1 + ⋯ + α m k v k B = \left[ {\begin{matrix}{} {{b_1}}& \cdots &{{b_m}} \end{matrix}} \right]\\ {b_1} = {\alpha _{11}}{v_1} + \cdots + {\alpha _{1k}}{v_k}\\ \vdots \\ {b_m} = {\alpha _{m1}}{v_1} + \cdots + {\alpha _{mk}}{v_k} B=[b1​​⋯​bm​​]b1​=α11​v1​+⋯+α1k​vk​⋮bm​=αm1​v1​+⋯+αmk​vk​

计算零状态响应
x ( t ) = ∫ t 0 t e A ( t − τ ) B u ( τ ) d τ = ∫ t 0 t e A ( t − τ ) [ b 1 ⋯ b m ] u ( τ ) d τ = ∫ t 0 t e A ( t − τ ) b 1 u ( τ ) d τ + ⋯ + ∫ t 0 t e A ( t − τ ) b m u ( τ ) d τ = ∫ t 0 t e A ( t − τ ) ( α 11 v 1 + α 12 v 2 + ⋯ + α 1 n v n + α 1 n + 1 v n + 1 + ⋯ + α 1 k v k ) u ( τ ) d τ + ⋯ + ∫ t 0 t e A ( t − τ ) ( α m 1 v 1 + α m 2 v 2 + ⋯ + α m n v n + α m n + 1 v n + 1 + ⋯ + α m k v k ) u ( τ ) d τ = ∫ t 0 t e A ( t − τ ) α 11 v 1 u ( τ ) d τ + ⋯ + ∫ t 0 t e A ( t − τ ) α 1 n v n u ( τ ) d τ + ∫ t 0 t e A ( t − τ ) α 1 n + 1 v n + 1 u ( τ ) d τ + ⋯ + ∫ t 0 t e A ( t − τ ) α 1 k v k u ( τ ) d τ + ⋯ + ∫ t 0 t e A ( t − τ ) α m 1 v 1 u ( τ ) d τ + ⋯ + ∫ t 0 t e A ( t − τ ) α m n v n u ( τ ) d τ + ∫ t 0 t e A ( t − τ ) α m n + 1 v n + 1 u ( τ ) d τ + ⋯ + ∫ t 0 t e A ( t − τ ) α m k v k u ( τ ) d τ = ( α 11 + ⋯ α m 1 ) ∫ t 0 t e λ 1 ( t − τ ) v 1 u ( τ ) d τ + ⋯ + ( α 1 n + ⋯ + α m n ) ∫ t 0 t e λ n ( t − τ ) v n u ( τ ) d τ + ( α 1 n + 1 + ⋯ + α m n + 1 ) ∫ t 0 t e A ( t − τ ) v n + 1 u ( τ ) d τ + ⋯ + ( α 1 k + ⋯ + α m k ) ∫ t 0 t e A ( t − τ ) v k u ( τ ) d τ x(t) = \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}Bu(\tau )d\tau } = \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}\left[ {\begin{matrix}{} {{b_1}}& \cdots &{{b_m}} \end{matrix}} \right]u(\tau )d\tau } \\ = \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{b_1}u(\tau )d\tau } + \cdots + \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{b_m}u(\tau )d\tau } \\ = \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}({\alpha _{11}}{v_1} + {\alpha _{12}}{v_2} + \cdots + {\alpha _{1n}}{v_n} + {\alpha _{1n{\rm{ + 1}}}}{v_{n{\rm{ + 1}}}} + \cdots + {\alpha _{1k}}{v_k})u(\tau )d\tau + \cdots + } \\ \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}({\alpha _{m1}}{v_1} + {\alpha _{m2}}{v_2} + \cdots + {\alpha _{mn}}{v_n} + {\alpha _{mn{\rm{ + 1}}}}{v_{n{\rm{ + 1}}}} + \cdots + {\alpha _{mk}}{v_k})u(\tau )d\tau } \\ = \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{\alpha _{11}}{v_1}u(\tau )d\tau } + \cdots + \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{\alpha _{1n}}{v_n}u(\tau )d\tau } + \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{\alpha _{1n + 1}}{v_{n + 1}}u(\tau )d\tau } + \cdots + \\ \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{\alpha _{1k}}{v_k}u(\tau )d\tau } + \cdots + \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{\alpha _{m1}}{v_1}u(\tau )d\tau } + \cdots + \\ \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{\alpha _{mn}}{v_n}u(\tau )d\tau } + \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{\alpha _{mn + 1}}{v_{n + 1}}u(\tau )d\tau } + \cdots + \int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{\alpha _{mk}}{v_k}u(\tau )d\tau } \\ = ({\alpha _{11}} + \cdots {\alpha _{m1}})\int\limits_{{t_0}}^t {{e^{{\lambda _1}(t - \tau )}}{v_1}u(\tau )d\tau } + \cdots + ({\alpha _{1n}} + \cdots + {\alpha _{mn}})\int\limits_{{t_0}}^t {{e^{{\lambda _n}(t - \tau )}}{v_n}u(\tau )d\tau } + \\ ({\alpha _{1n + 1}} + \cdots + {\alpha _{mn + 1}})\int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{v_{n + 1}}u(\tau )d\tau } + \cdots + ({\alpha _{1k}} + \cdots + {\alpha _{mk}})\int\limits_{{t_0}}^t {{e^{A(t - \tau )}}{v_k}u(\tau )d\tau } x(t)=t0​∫t​eA(t−τ)Bu(τ)dτ=t0​∫t​eA(t−τ)[b1​​⋯​bm​​]u(τ)dτ=t0​∫t​eA(t−τ)b1​u(τ)dτ+⋯+t0​∫t​eA(t−τ)bm​u(τ)dτ=t0​∫t​eA(t−τ)(α11​v1​+α12​v2​+⋯+α1n​vn​+α1n+1​vn+1​+⋯+α1k​vk​)u(τ)dτ+⋯+t0​∫t​eA(t−τ)(αm1​v1​+αm2​v2​+⋯+αmn​vn​+αmn+1​vn+1​+⋯+αmk​vk​)u(τ)dτ=t0​∫t​eA(t−τ)α11​v1​u(τ)dτ+⋯+t0​∫t​eA(t−τ)α1n​vn​u(τ)dτ+t0​∫t​eA(t−τ)α1n+1​vn+1​u(τ)dτ+⋯+t0​∫t​eA(t−τ)α1k​vk​u(τ)dτ+⋯+t0​∫t​eA(t−τ)αm1​v1​u(τ)dτ+⋯+t0​∫t​eA(t−τ)αmn​vn​u(τ)dτ+t0​∫t​eA(t−τ)αmn+1​vn+1​u(τ)dτ+⋯+t0​∫t​eA(t−τ)αmk​vk​u(τ)dτ=(α11​+⋯αm1​)t0​∫t​eλ1​(t−τ)v1​u(τ)dτ+⋯+(α1n​+⋯+αmn​)t0​∫t​eλn​(t−τ)vn​u(τ)dτ+(α1n+1​+⋯+αmn+1​)t0​∫t​eA(t−τ)vn+1​u(τ)dτ+⋯+(α1k​+⋯+αmk​)t0​∫t​eA(t−τ)vk​u(τ)dτ

该系统的响应可以在 v 1 v_1 v1​ v 2 v_2 v2​ . . . ... ... v n v_n vn​方向上,所以系统 { A , B } \left\{ {A,B} \right\} {A,B}所有状态变量都可以由输入信号控制。所以该系统是完全能控的。

例子:
x ˙ = ( 2 1 0 3 ) x + ( 0 1 ) u \dot x = \left( {\begin{matrix}{} 2&1\\ 0&3 \end{matrix}} \right)x + \left( {\begin{matrix}{} 0\\ 1 \end{matrix}} \right)u x˙=(20​13​)x+(01​)u

已知该系统完全能控, A A A的特征值为 λ 1 = 2 , λ 2 = 3 {\lambda _1} = 2,{\lambda _2} = 3 λ1​=2,λ2​=3特征向量 v 1 = ( 1 0 ) , v 2 = ( 0 . 707 0 . 707 ) {v_1} = \left( {\begin{matrix}{} 1\\ 0 \end{matrix}} \right),{v_2} = \left( {\begin{matrix}{} {{\rm{0}}{\rm{.707}}}\\ {{\rm{0}}{\rm{.707}}} \end{matrix}} \right) v1​=(10​),v2​=(0.7070.707​)

B = − v 1 + 1 0.707 v 2 = − ( 1 0 ) + 1 0.707 × ( 0.707 0.707 ) = ( 0 1 ) B = - {v_1} + \frac{1}{{0.707}}{v_2} = {\rm{ - }}\left( {\begin{matrix}{} {\rm{1}}\\ {\rm{0}} \end{matrix}} \right){\rm{ + }}\frac{1}{{0.707}} \times \left( {\begin{matrix}{} {0.707}\\ {0.707} \end{matrix}} \right){\rm{ = }}\left( {\begin{matrix}{} {\rm{0}}\\ {\rm{1}} \end{matrix}} \right) B=−v1​+0.7071​v2​=−(10​)+0.7071​×(0.7070.707​)=(01​)

其中 B B B的所有列不属于任意一个 A A A的真线性不变子空间, B B B的所有列属于 的线性不变子空间。

作业3

题目

以4阶两输入系统为例,分析 A A A的特征向量和 B B B的每列之间的关系,说明系统的能控性。

解答

A A A的特征根的 λ 1 , λ 2 , λ 3 , λ 4 {\lambda _{\rm{1}}},{\lambda _2},{\lambda _3},{\lambda _4} λ1​,λ2​,λ3​,λ4​, A A A 的特征向量是 v 1 , v 2 , v 3 , v 4 {v_{\rm{1}}},{v_2},{v_3},{v_4} v1​,v2​,v3​,v4​ ,两输入系统 的向量 B = [ b 1 b 2 ] B = \left[ {\begin{matrix}{} {{b_1}}&{{b_2}} \end{matrix}} \right] B=[b1​​b2​​],
b 1 = α 11 v 1 + ⋯ + α 1 k v k b 2 = α 21 v 1 + ⋯ + α 2 k v k \begin{array}{l} {b_1} = {\alpha _{11}}{v_1} + \cdots + {\alpha _{1k}}{v_k}\\ {b_2} = {\alpha _{21}}{v_1} + \cdots + {\alpha _{2k}}{v_k} \end{array} b1​=α11​v1​+⋯+α1k​vk​b2​=α21​v1​+⋯+α2k​vk​​
x ( t ) = e A t x ( 0 ) + ∫ 0 t e A ( t − τ ) B u ( τ ) d τ x(t) = {e^{At}}x(0) + \int\limits_0^t {{e^{A(t - \tau )}}} Bu(\tau )d\tau x(t)=eAtx(0)+0∫t​eA(t−τ)Bu(τ)dτ
∫ 0 t e A ( t − τ ) B u ( τ ) d τ = ∫ 0 t e A ( t − τ ) [ b 1 b 2 ] u ( τ ) d τ = ∫ 0 t e A ( t − τ ) ( α 11 v 1 + ⋯ + α 1 k v k ) u ( τ ) d τ + ∫ 0 t e A ( t − τ ) ( α 21 v 1 + ⋯ + α 2 k v k ) u ( τ ) d τ = ( α 11 + α 21 ) ∫ 0 t e λ 1 ( t − τ ) u ( τ ) d τ ∙ v 1 + ⋯ + ( α 1 k + α 2 k ) ∫ 0 t e A ( t − τ ) u ( τ ) d τ ∙ v k \int\limits_0^t {{e^{A(t - \tau )}}} Bu(\tau )d\tau = \int\limits_0^t {{e^{A(t - \tau )}}} \left[ {\begin{matrix}{} {{b_1}}&{{b_2}} \end{matrix}} \right]u(\tau )d\tau \\ = \int\limits_0^t {{e^{A(t - \tau )}}} ({\alpha _{11}}{v_1} + \cdots + {\alpha _{1k}}{v_k})u(\tau )d\tau + \int\limits_0^t {{e^{A(t - \tau )}}} ({\alpha _{21}}{v_1} + \cdots + {\alpha _{2k}}{v_k})u(\tau )d\tau \\ = ({\alpha _{11}} + {\alpha _{21}})\int\limits_0^t {{e^{{\lambda _1}(t - \tau )}}} u(\tau )d\tau \bullet {v_1} + \cdots + ({\alpha _{1k}} + {\alpha _{2k}})\int\limits_0^t {{e^{A(t - \tau )}}} u(\tau )d\tau \bullet {v_k} 0∫t​eA(t−τ)Bu(τ)dτ=0∫t​eA(t−τ)[b1​​b2​​]u(τ)dτ=0∫t​eA(t−τ)(α11​v1​+⋯+α1k​vk​)u(τ)dτ+0∫t​eA(t−τ)(α21​v1​+⋯+α2k​vk​)u(τ)dτ=(α11​+α21​)0∫t​eλ1​(t−τ)u(τ)dτ∙v1​+⋯+(α1k​+α2k​)0∫t​eA(t−τ)u(τ)dτ∙vk​

当 的时候 k < 4 k < 4 k<4,上式可以表示为
∫ 0 t e A ( t − τ ) B u ( τ ) d τ = ( α 11 + α 21 ) ∫ 0 t e λ 1 ( t − τ ) u ( τ ) d τ ∙ v 1 + ⋯ + ( α 1 k + α 2 k ) ∫ 0 t e A ( t − τ ) u ( τ ) d τ ∙ v 4 = ( α 11 + α 21 ) ∫ 0 t e λ 1 ( t − τ ) u ( τ ) d τ ∙ v 1 + ⋯ + ( α 1 k + α 2 k ) ∫ 0 t e λ k ( t − τ ) u ( τ ) d τ ∙ v k \int\limits_0^t {{e^{A(t - \tau )}}} Bu(\tau )d\tau \\ = ({\alpha _{11}} + {\alpha _{21}})\int\limits_0^t {{e^{{\lambda _1}(t - \tau )}}} u(\tau )d\tau \bullet {v_1} + \cdots + ({\alpha _{1k}} + {\alpha _{2k}})\int\limits_0^t {{e^{A(t - \tau )}}} u(\tau )d\tau \bullet {v_4}\\ = ({\alpha _{11}} + {\alpha _{21}})\int\limits_0^t {{e^{{\lambda _1}(t - \tau )}}} u(\tau )d\tau \bullet {v_1} + \cdots + ({\alpha _{1k}} + {\alpha _{2k}})\int\limits_0^t {{e^{{\lambda _k}(t - \tau )}}} u(\tau )d\tau \bullet {v_k} 0∫t​eA(t−τ)Bu(τ)dτ=(α11​+α21​)0∫t​eλ1​(t−τ)u(τ)dτ∙v1​+⋯+(α1k​+α2k​)0∫t​eA(t−τ)u(τ)dτ∙v4​=(α11​+α21​)0∫t​eλ1​(t−τ)u(τ)dτ∙v1​+⋯+(α1k​+α2k​)0∫t​eλk​(t−τ)u(τ)dτ∙vk​

当 k ≥ 4 k \ge 4 k≥4的时候,上式可以表示为
∫ 0 t e A ( t − τ ) B u ( τ ) d τ = ( α 11 + α 21 ) ∫ 0 t e λ 1 ( t − τ ) u ( τ ) d τ ∙ v 1 + ⋯ + ( α 1 k + α 2 k ) ∫ 0 t e A ( t − τ ) u ( τ ) d τ ∙ v 4 = ( α 11 + α 21 ) ∫ 0 t e λ 1 ( t − τ ) u ( τ ) d τ ∙ v 1 + ⋯ + ( α 14 + α 24 ) ∫ 0 t e λ 4 ( t − τ ) u ( τ ) d τ ∙ v 4 + δ \int\limits_0^t {{e^{A(t - \tau )}}} Bu(\tau )d\tau \\ = ({\alpha _{11}} + {\alpha _{21}})\int\limits_0^t {{e^{{\lambda _1}(t - \tau )}}} u(\tau )d\tau \bullet {v_1} + \cdots + ({\alpha _{1k}} + {\alpha _{2k}})\int\limits_0^t {{e^{A(t - \tau )}}} u(\tau )d\tau \bullet {v_4}\\ = ({\alpha _{11}} + {\alpha _{21}})\int\limits_0^t {{e^{{\lambda _1}(t - \tau )}}} u(\tau )d\tau \bullet {v_1} + \cdots + ({\alpha _{14}} + {\alpha _{24}})\int\limits_0^t {{e^{{\lambda _4}(t - \tau )}}} u(\tau )d\tau \bullet {v_4} + \delta 0∫t​eA(t−τ)Bu(τ)dτ=(α11​+α21​)0∫t​eλ1​(t−τ)u(τ)dτ∙v1​+⋯+(α1k​+α2k​)0∫t​eA(t−τ)u(τ)dτ∙v4​=(α11​+α21​)0∫t​eλ1​(t−τ)u(τ)dτ∙v1​+⋯+(α14​+α24​)0∫t​eλ4​(t−τ)u(τ)dτ∙v4​+δ

当 k = 4 k = 4 k=4时, δ = 0 \delta = 0 δ=0
当 k > 4 k > 4 k>4时, δ = ( α 15 + α 25 ) ∫ 0 t e A ( t − τ ) u ( τ ) d τ ∙ v 5 ⋯ + ( α 1 k + α 2 k ) ∫ 0 t e λ 4 ( t − τ ) u ( τ ) d τ ∙ v 4 \delta = ({\alpha _{15}} + {\alpha _{25}})\int\limits_0^t {{e^{A(t - \tau )}}} u(\tau )d\tau \bullet {v_5} \cdots + ({\alpha _{1k}} + {\alpha _{2k}})\int\limits_0^t {{e^{{\lambda _4}(t - \tau )}}} u(\tau )d\tau \bullet {v_4} δ=(α15​+α25​)0∫t​eA(t−τ)u(τ)dτ∙v5​⋯+(α1k​+α2k​)0∫t​eλ4​(t−τ)u(τ)dτ∙v4​

由上述分析可以得到当 k ≥ 4 k \ge 4 k≥4的时候,即 B B B的 的所有列属于一个存在的 A A A的真线性不变子空间的时候,系统完全能控,反之,不能包含 A A A中特征向量的所有方向,不能控。

标签:tau,粗浅,线性系统,matrix,limits,int,作业,cdots,alpha
来源: https://blog.csdn.net/weixin_40999869/article/details/114610131