【力扣】1052. 爱生气的书店老板
作者:互联网
以下为力扣官方题解
1052. 爱生气的书店老板
题目
今天,书店老板有一家店打算试营业 c u s t o m e r s . l e n g t h customers.length customers.length 分钟。每分钟都有一些顾客( c u s t o m e r s [ i ] customers[i] customers[i])会进入书店,所有这些顾客都会在那一分钟结束后离开。
在某些时候,书店老板会生气。 如果书店老板在第 i i i 分钟生气,那么 g r u m p y [ i ] = 1 grumpy[i] = 1 grumpy[i]=1,否则 g r u m p y [ i ] = 0 grumpy[i] = 0 grumpy[i]=0。 当书店老板生气时,那一分钟的顾客就会不满意,不生气则他们是满意的。
书店老板知道一个秘密技巧,能抑制自己的情绪,可以让自己连续 X X X 分钟不生气,但却只能使用一次。
请你返回这一天营业下来,最多有多少客户能够感到满意的数量。
示例
输入: c u s t o m e r s = [ 1 , 0 , 1 , 2 , 1 , 1 , 7 , 5 ] , g r u m p y = [ 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ] , X = 3 customers = [1,0,1,2,1,1,7,5], grumpy = [0,1,0,1,0,1,0,1], X = 3 customers=[1,0,1,2,1,1,7,5],grumpy=[0,1,0,1,0,1,0,1],X=3
输出: 16 16 16
解释:书店老板在最后 3 3 3 分钟保持冷静。
感到满意的最大客户数量 = 1 + 1 + 1 + 1 + 7 + 5 = 16. = 1 + 1 + 1 + 1 + 7 + 5 = 16. =1+1+1+1+7+5=16.
提示
- 1 < = X < = c u s t o m e r s . l e n g t h = = g r u m p y . l e n g t h < = 20000 1 <= X <= customers.length == grumpy.length <= 20000 1<=X<=customers.length==grumpy.length<=20000
- 0 < = c u s t o m e r s [ i ] < = 1000 0 <= customers[i] <= 1000 0<=customers[i]<=1000
- 0 < = g r u m p y [ i ] < = 1 0 <= grumpy[i] <= 1 0<=grumpy[i]<=1
官方题解
方法一 滑动窗口
假设数组 c u s t o m e r s customers customers 和 g r u m p y grumpy grumpy 的长度是 n n n,不使用秘密技巧时,满意的顾客数量是 t o t a l total total,则 t o t a l total total 的值为:
total = ∑ i = 0 n − 1 customers [ i ] × I ( grumpy [ i ] = 0 ) \textit{total}=\sum\limits_{i=0}^{n-1} \textit{customers}[i] \times \mathbb{I}(\textit{grumpy}[i]=0) total=i=0∑n−1customers[i]×I(grumpy[i]=0) |
---|
其中 I ( grumpy [ i ] = 0 ) \mathbb{I}(\textit{grumpy}[i]=0) I(grumpy[i]=0) 为示性函数,当 g r u m p y [ i ] = 0 grumpy[i]=0 grumpy[i]=0 时 I ( grumpy [ i ] = 0 ) = 1 \mathbb{I}(\textit{grumpy}[i]=0)=1 I(grumpy[i]=0)=1,当 g r u m p y [ i ] = 1 grumpy[i]=1 grumpy[i]=1 时 I ( grumpy [ i ] = 0 ) = 0 \mathbb{I}(\textit{grumpy}[i]=0)=0 I(grumpy[i]=0)=0。
秘密技巧的效果是,找到数组 g r u m p y grumpy grumpy 的一个长度为 X X X 的子数组,使得该子数组中的元素都变成 0 0 0,数组 c u s t o m e r s customers customers 的对应下标范围的子数组中的所有顾客都变成满意的。如果对下标范围 [ i − X + 1 , i ] [i−X+1,i] [i−X+1,i] 的子数组使用秘密技巧时(其中 i ≥ X − 1 i \ge X-1 i≥X−1),增加的满意顾客的数量是 increase i \textit{increase}_i increasei,则 increase i \textit{increase}_i increasei 的值为:
increase i = ∑ j = i − X + 1 i customers [ j ] × I ( grumpy [ j ] = 1 ) \textit{increase}_i=\sum\limits_{j=i-X+1}^i \textit{customers}[j] \times \mathbb{I}(\textit{grumpy}[j]=1) increasei=j=i−X+1∑icustomers[j]×I(grumpy[j]=1) |
---|
其中 I ( grumpy [ j ] = 1 ) \mathbb{I}(\textit{grumpy}[j]=1) I(grumpy[j]=1) 为示性函数,当 grumpy [ j ] = 1 \textit{grumpy}[j]=1 grumpy[j]=1 时 I ( grumpy [ j ] = 1 ) = 1 \mathbb{I}(\textit{grumpy}[j]=1)=1 I(grumpy[j]=1)=1,当 grumpy [ j ] = 0 \textit{grumpy}[j]=0 grumpy[j]=0 时 I ( grumpy [ j ] = 1 ) = 0 \mathbb{I}(\textit{grumpy}[j]=1)=0 I(grumpy[j]=1)=0。由于 grumpy [ j ] \textit{grumpy}[j] grumpy[j] 的值只能是 1 1 1 或 0 0 0,因此 I ( grumpy [ j ] = 1 ) = grumpy [ j ] \mathbb{I}(\textit{grumpy}[j]=1)=\textit{grumpy}[j] I(grumpy[j]=1)=grumpy[j], increase i \textit{increase}_i increasei 的值可以表示成如下形式:
increase i = ∑ j = i − X + 1 i customers [ j ] × grumpy [ j ] \textit{increase}_i=\sum\limits_{j=i-X+1}^i \textit{customers}[j] \times \textit{grumpy}[j] increasei=j=i−X+1∑icustomers[j]×grumpy[j] |
---|
为了让满意的顾客数量最大化,应该找到满足 X − 1 ≤ i < n X-1 \le i<n X−1≤i<n 的下标 i i i,使得 increase i \textit{increase}_i increasei 的值最大。
注意到当 i > X − 1 i>X-1 i>X−1 时,将 i i i 替换成 i − 1 i-1 i−1,可以得到 increase i − 1 \textit{increase}_{i-1} increasei−1 的值为:
increase i − 1 = ∑ j = i − X i − 1 customers [ j ] × grumpy [ j ] \textit{increase}_{i-1}=\sum\limits_{j=i-X}^{i-1} \textit{customers}[j] \times \textit{grumpy}[j] increasei−1=j=i−X∑i−1customers[j]×grumpy[j] |
---|
将 increase i \textit{increase}_i increasei 和 increase i − 1 \textit{increase}_{i-1} increasei−1 相减,可以得到如下关系:
increase i − increase i − 1 = customers [ i ] × grumpy [ i ] − customers [ i − X ] × grumpy [ i − X ] \begin{aligned} \textit{increase}_i-\textit{increase}_{i-1} = \textit{customers}[i] \times \textit{grumpy}[i]-\textit{customers}[i-X] \times \textit{grumpy}[i-X] \end{aligned} increasei−increasei−1=customers[i]×grumpy[i]−customers[i−X]×grumpy[i−X] |
---|
整理得到:
increase i = increase i − 1 − customers [ i − X ] × grumpy [ i − X ] + customers [ i ] × grumpy [ i ] \textit{increase}_i=\textit{increase}_{i-1}-\textit{customers}[i-X] \times \textit{grumpy}[i-X]+\textit{customers}[i] \times \textit{grumpy}[i] increasei=increasei−1−customers[i−X]×grumpy[i−X]+customers[i]×grumpy[i] |
---|
上述过程可以看成维护一个长度为 X X X 的滑动窗口。当滑动窗口从下标范围 [ i − X , i − 1 ] [i−X,i−1] [i−X,i−1] 移动到下标范围 [ i − X + 1 , i ] [i−X+1,i] [i−X+1,i] 时,下标 i − X i−X i−X 从窗口中移出,下标 i i i 进入到窗口内。
利用上述关系,可以在 O ( 1 ) O(1) O(1) 的时间内通过 increase i − 1 \textit{increase}_{i-1} increasei−1 得到 increase i \textit{increase}_i increasei。
由于长度为 X X X 的子数组的最小结束下标是 X − 1 X−1 X−1,因此第一个长度为 X X X 的子数组对应的 i n c r e a s e increase increase 的值为 increase X − 1 \textit{increase}_{X-1} increaseX−1,需要通过遍历数组 customers \textit{customers} customers 和 g r u m p y grumpy grumpy 的前 X X X 个元素计算得到。从 increase X \textit{increase}_X increaseX 到 increase n − 1 \textit{increase}_{n-1} increasen−1 的值则可利用上述关系快速计算得到。只需要遍历数组 customers \textit{customers} customers 和 grumpy \textit{grumpy} grumpy 各一次即可得到 X ≤ i < n X \le i<n X≤i<n 的每个 increase i \textit{increase}_i increasei 的值,时间复杂度是 O ( n ) O(n) O(n)。
又由于计算初始的 t o t a l total total 的值需要遍历数组 c u s t o m e r s customers customers 和 g r u m p y grumpy grumpy 各一次,因此整个过程只需要遍历数组 c u s t o m e r s customers customers 和 g r u m p y grumpy grumpy 各两次,时间复杂度是 O ( n ) O(n) O(n)。
在上述过程中维护增加的满意顾客的最大数量,记为 m a x I n c r e a s e maxIncrease maxIncrease,则满意顾客的最大总数是 t o t a l + m a x I n c r e a s e total+maxIncrease total+maxIncrease。
代码
class Solution {
public int maxSatisfied(int[] customers, int[] grumpy, int X) {
int total = 0;
int n = customers.length;
for (int i=0; i<n; i++)
{
if (grumpy[i] == 0)
{
total += customers[i];
}
}
int increase = 0;
for (int i=0; i<X; i++)
{
increase += customers[i] * grumpy[i];
}
int maxIncrease = increase;
for (int i=X; i<n; i++)
{
increase = increase - customers[i-X]*grumpy[i-X] + customers[i]*grumpy[i];
maxIncrease = Math.max(maxIncrease, increase);
}
return total+maxIncrease;
}
}
复杂度分析
- 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 c u s t o m e r s customers customers 和 g r u m p y grumpy grumpy 的长度。需要对两个数组各遍历两次。
- 空间复杂度: O ( 1 ) O(1) O(1)。
标签:increase,1052,increasei,customers,力扣,爱生气,textit,grumpy,total 来源: https://blog.csdn.net/qq_45256357/article/details/114000304