【语音识别】基于BP神经网络的语音情感识别【Matlab 258期】
作者:互联网
一、简介
BP网络(Back Propagation),是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。
BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。
2 BP神经网络模型及其基本原理
3 BP_PID算法流程
二、源代码
%实验要求:基于神经网络的语音情感识别
clc
close all
clear all
load A_fear fearVec;
load F_happiness hapVec;
load N_neutral neutralVec;
load T_sadness sadnessVec;
load W_anger angerVec;
trainsample(1:30,1:140)=angerVec(:,1:30)';
trainsample(31:60,1:140)=hapVec(:,1:30)';
trainsample(61:90,1:140)=neutralVec(:,1:30)';
trainsample(91:120,1:140)=sadnessVec(:,1:30)';
trainsample(121:150,1:140)=fearVec(:,1:30)';
trainsample(1:30,141)=1;
trainsample(31:60,141)=2;
trainsample(61:90,141)=3;
trainsample(91:120,141)=4;
trainsample(121:150,141)=5;
testsample(1:20,1:140)=angerVec(:,31:50)';
testsample(21:40,1:140)=hapVec(:,31:50)';
testsample(41:60,1:140)=neutralVec(:,31:50)';
testsample(61:80,1:140)=sadnessVec(:,31:50)';
testsample(81:100,1:140)=fearVec(:,31:50)';
testsample(1:20,141)=1;
testsample(21:40,141)=2;
testsample(41:60,141)=3;
testsample(61:80,141)=4;
testsample(81:100,141)=5;
class=trainsample(:,141);
sum=bpnn(trainsample,testsample,class);
figure(1)
bar(sum,0.5);
set(gca,'XTickLabel',{'生气','高兴','中性','悲伤','害怕'});
ylabel('识别率');
xlabel('五种基本情感');
p_train=trainsample(:,1:140)';
t_train=trainsample(:,141)';
p_test=testsample(:,1:140)';
t_test=testsample(:,141)';
sumpnn=pnn(p_train,t_train,p_test,t_test);
figure(2)
bar(sumpnn,0.5);
set(gca,'XTickLabel',{'生气','高兴','中性','悲伤','害怕'});
ylabel('识别率');
xlabel('五种基本情感');
sumlvq=lvq(trainsample,testsample,class);
function sum=bpnn(trainsample,testsample,class)
%输入参数:trainsample是训练样本,testsample是测试样本,class表示训练样本的类别,与trainsample中数据对应
%sum:五种基本情感的识别率
for i=1:140
feature(:,i)= trainsample(:,i);
end
%特征值归一化
[input,minI,maxI] = premnmx( feature') ;
%构造输出矩阵
s = length( class ) ;
output = zeros( s , 5 ) ;
for i = 1 : s
output( i , class( i ) ) = 1 ;
end
三、运行结果
四、备注
完整代码或者代写添加QQ912100926
往期回顾>>>>>>
【信号处理】基于GUI界面之处理录音与音频【Matlab 123期】
【信号处理】CDR噪声和混响抑制【含Matlab源码 198期】
【信号处理】最小二乘法解决稀疏信号恢复问题【Matlab 199期】
【信号处理】遗传算法的VST混响【Matlab 200期】
【信号处理】HMM的睡眠状态检测【Matlab 201期】
【信号处理】小波变换的音频水印嵌入提取【Matlab 202期】
【信号处理】ICA算法信号分离【Matlab 203期】
【信号处理】基于GUI界面的脉搏信号之脉率存档【Matlab 204期】
【信号处理】基于GUI界面的虚拟信号发生器(各种波形)【Matlab 205期】
【信号处理】基于GUI界面信号发生器之电子琴【Matlab 206期】
【信号处理】数字电子琴设计与实现【Matlab 207期】
【雷达通信】雷达数字信号处理【Matlab 214期】
【雷达通信】线性调频(LFM)脉冲压缩雷达仿真【Matlab 215期】
【雷达通信】距离多普勒(RD)、CS、RM算法的机载雷达成像【Matlab 216期】
【雷达通信】《现代雷达系统分析与设计》【Matlab 217期】
【语音处理】基于matlab GUI语音信号处理平台【含Matlab源码 218期】
【语音采集】基于GUI语音信号采集【Matlab 219期】
【语音调制】基于GUI语音幅度调制【Matlab 220期】
【语音合成】基于GUI语音合成【Matlab 221期】
【语音识别】基于GUI语音基频识别【Matlab 222期】
【语音加密】基于GUI语音信号加密解密【Matlab 223期】
【信号处理】小波变换的语音增强【Matlab 224期】
【信号处理】基于GUI语音去噪【Matlab 225期】
【语音增强】基于GUI维纳滤波之语音增强【Matlab 226期】
【音频处理】基于GUI语音信号处理【含Matlab 227期】
【雷达通信】基于GUI雷达定位【Matlab 244期】
【雷达通信】基于GUI雷达脉冲压缩【Matlab 245期】
【雷达通信】基于GUI雷达定位模拟【Matlab 246期】
【雷达通信】SVM识别雷达数据【Matlab 247期】
【信息处理】GUI数字波束的算法库【Matlab 249期】
【通信】OFDM-MIMO通信建模与仿真【Matlab 250期】
【通信】OFDM仿真【Matlab 251期】
【信号处理】窗函数法的FIR数字滤波器设计【Matlab 252期】
【通信】FIR低通数字滤波器设计【Matlab 253期】
【通信】FIR IIR数字滤波器设计【Matlab 254期】
【调制信号】基于GUI数字调制信号仿真【Matlab 255期】
【通信】扩频通信系统设计【Matlab 256期】
【通信】多径衰落信道的仿真【Matlab 257期】
标签:testsample,trainsample,GUI,258,Matlab,语音,识别,信号处理 来源: https://blog.csdn.net/m0_54742769/article/details/113923952