Union Find
作者:互联网
并查集
Dynamic Connectivity
动态连通性问题,满足:
1.symmetric:自反性
2.transitive:传递性
3.reflexive:对称性
API
QuickFind
public class QuickFind { private int[] id; public QuickFind(int nums){ id = new int[nums]; for(int i = 0; i < id.length ; i++){ id[i] = i; } } public boolean isConnected(int p , int q ){ return (id[p] == id[q]); } public void union(int p , int q ){ int pid = id[p]; int qid = id[q]; for (int i = 0; i < id.length; i++) { if(id[i] == pid){ id[i] = qid; } } } }
刚开始每个元素都与自己连通,进行union(p,q) == 将p 连接到 q上,quickfind将pid全部改为qid。
QuickUnion
public class QuickUnionUF { private int[] id; public QuickUnionUF(int num){ id = new int[num]; for (int i = 0; i < id.length; i++) { id[i] = i; } } public int findroot(int i){ while(id[i] != i){ i = id[i]; } return i; } public boolean isConnected(int p , int q){ return findroot(p) == findroot(q); } public void union(int p , int q ){ int proot = findroot(p); int qroot = findroot(q); id[proot] = qroot; } }
QuickUnion将连通分量抽象成树,用根节点是否一致来判断连通性;
缺陷:数的高度很高,查找根节点操作需要进行多次,速度不快。
Weighted QuickUnion
1 public class WeightedQuickUnionUF { 2 private int[] parents; 3 private int count; 4 private int[] size; 5 public WeightedQuickUnionUF(int num){ 6 parents = new int[num]; 7 size = new int[num]; 8 count = num; 9 for (int i = 0; i < num; i++) { 10 parents[i] = i; 11 size[i] = 1; 12 } 13 } 14 public int find(int p ){ 15 while(parents[p] != p){ 16 parents[p] = parents[parents[p]]; //路径压缩!!!! 17 p = parents[p]; 18 } 19 return p; 20 } 21 public boolean isConnected(int p , int q ){ 22 return (parents[p] == parents[q]); 23 } 24 public void union(int p , int q ){ 25 if(isConnected(p,q)){ 26 return; 27 }else{ 28 int pid = find(p); 29 int qid = find(q); 30 if(size[p] <= size[q]){ 31 parents[p] = qid; 32 size[qid] += size[pid]; 33 }else{ 34 parents[q] = pid; 35 size[pid] += size[qid]; 36 } 37 count--; 38 } 39 } 40 }
优点:任意节点x的深度最多为lgN,原因是只有向size更大的节点合并时,树的高度才会+1,因此总共N个节点,最多可以加倍lgN次,高度最高为lgN
标签:return,Union,Find,int,num,parents,id,public 来源: https://www.cnblogs.com/JasonJ/p/14402917.html