数据结构——树
作者:互联网
def tree(root_label, branches = []):
"""定义一棵树,树根节点值,树的分支
root_label: 根节点值
branches: 分支,初始为空,只有根节点
"""
for branch in branches:
# 遍历子树,每个子树都要是树
assert is_tree(branch), 'branches must be trees'
# 返回根节点+子树列表
return [root_label] + list(branches)
def label(tree):
# 索引为0的为根节点
return tree[0]
def branches(tree):
# 索引1后为子树
return tree[1:]
def is_tree(tree):
# 输入一颗树,判断是不是树, 即树需要是列表,并且长度大于1
if type(tree) != list or len(tree) < 1:
return False
for branch in branches(tree):
# 检查子树是不是树
if not is_tree(branch):
return False
return True
def is_leaf(tree):
# 判断一棵树是不是叶子节点, 如果不算子树,则是叶子节点
return not branches(tree)
def fib_tree(n):
# n:根节点值
if n == 0 or n == 1:
return tree(n)
else:
left, right = fib_tree(n - 2), fib_tree(n - 1)
# n号节点值为n-1号和n-2号之和
fib_n = label(left) + label(right)
# tree(父节点值,子树)
return tree(fib_n, [left, right])
def count_leaves(tree):
# 是叶子节点就返回1
if is_leaf(tree):
return 1
else:
# 在每个子树里寻找叶子节点
branch_counts = [count_leaves(branch) for branch in branches(tree)]
# 把子树里的叶子节点加起来
return sum(branch_counts)
def partition_tree(n, m):
# 父节点值为0,树只有这一个节点,返回True
if n == 0:
return tree(True)
elif n < 0 or m == 0:
return tree(False)
else:
# 左节点值为n - m
left = partition_tree(n - m, m)
# 右节点值为m - 1 分割的n
right = partition_tree(n, m - 1)
return tree(m, [left, right])
def print_parts(tree, partition = []):
# 如果是叶子节点
if is_leaf(tree):
# 如果该节点值不为0
# 递归基本条件:在叶子节点前加 + 输出,
if label(tree):
print('+'.join(partition))
else:
left, right = branches(tree)
m = str(label(tree))
print_parts(left, partition + [m])
print_parts(right, partition)
def left_binarize(tree):
if is_leaf(tree):
return tree
if len(tree) > 2:
tree = [tree[1:],tree[0]]
return (left_binarize(branch) for branch in tree)
left_binarize([1,2,3,4,5,6,7])
标签:branches,tree,branch,return,数据结构,节点,def 来源: https://blog.csdn.net/Ennis_Tongji/article/details/113803319