其他分享
首页 > 其他分享> > Semi-supervised Learning

Semi-supervised Learning

作者:互联网

Semi-supervised Learning

1. What is Semi-supervised Learning

  1. Supervised Learning

    labeled data:\(\{(x^r,\hat{y}^r\}_{r=1}^R\)

    E.g: image,\(\hat{y}^r\): class labeles

  2. Unsupervised Learning

    unlabeled data:\(\{x^r\}_{r=1}^R\)

    E.g: Clustering problem

  3. Semi-supervised Learning

    both labeled data and unlabeled data:\(\{(x^r,\hat{y}^r)\}_{r=1}^R,\{x^u\}_{u=R}^{R+U}\)

    • A set of unlabeled data,usually U >> R
    • Transductive Learning: unlabeled data is the testing data
    • Inductive Learning: unlabeled data is not the testing data

2. Why Semi-supervied Learning

标签:Semi,unlabeled,hat,supervised,Learning,data
来源: https://www.cnblogs.com/popodynasty/p/14397568.html