其他分享
首页 > 其他分享> > EDA中级-kaggle学习3.5-训练结构

EDA中级-kaggle学习3.5-训练结构

作者:互联网

总体训练结构

上文

总体介绍

  1. 提供了2种encoding的方式:one-hot-encoding和label-encoding
  2. cross-validation用了kfold
  3. 模型用了lightGBMClassifier

个人觉得值得学习的地方在于自己生成一些metrics指标和coding的基本技巧

分段分析

准备工作

这里准备了

  1. 训练和测试的id--->提取备用
  2. 训练和测试的features--->维度要一样!
  3. 训练的targets/labels--->测试的label就是我们要预测的
 # Extract the ids
    train_ids = features['SK_ID_CURR']
    test_ids = test_features['SK_ID_CURR']
    
    # Extract the labels for training
    labels = features['TARGET']
    
    # Remove the ids and target
    features = features.drop(columns = ['SK_ID_CURR', 'TARGET'])
    test_features = test_features.drop(columns = ['SK_ID_CURR'])

one hot encoding

上面说训练和测试的features--->维度要一样!
所以在get_dummies之后要align,去除train在one-hot中多出来的feature(test里面没有)
虽然这好像丢失了一些信息,但是这些信息是test里面没有的,我们也没必要考虑。
cat_indice是没有的因为我们把所有的cat列都变成了one-hot

# One Hot Encoding
    if encoding == 'ohe':
        features = pd.get_dummies(features)
        test_features = pd.get_dummies(test_features)
        
        # Align the dataframes by the columns
        features, test_features = features.align(test_features, join = 'inner', axis = 1)
        
        # No categorical indices to record
        cat_indices = 'auto'

label encoding

  1. 这里是用labelencoder,对于类型是object的每一列进行integer label encoding
  2. 然后reshape((-1,))是保证输出是只有:单独一列行数随便
  3. 记录下是object(categorical)列的indice,用于之后训练中的参数
# Integer label encoding
    elif encoding == 'le':
        
        # Create a label encoder
        label_encoder = LabelEncoder()
        
        # List for storing categorical indices
        cat_indices = []
        
        # Iterate through each column
        for i, col in enumerate(features):
            if features[col].dtype == 'object':
                # Map the categorical features to integers
                features[col] = label_encoder.fit_transform(np.array(features[col].astype(str)).reshape((-1,)))
                test_features[col] = label_encoder.transform(np.array(test_features[col].astype(str)).reshape((-1,)))

                # Record the categorical indices
                cat_indices.append(i)

准备工作2

  1. 创建kfold对象来split我们的数据集
  2. 生成空白的feature_importance数组
  3. 生成空白的test_prediction数组
  4. 生成空白的valid_prediction数组(out_of_fold)
  5. 生成空白的valid_scores 和train_scores
# Extract feature names
    feature_names = list(features.columns)
    
    # Convert to np arrays
    features = np.array(features)
    test_features = np.array(test_features)
    
    # Create the kfold object
    k_fold = KFold(n_splits = n_folds, shuffle = False, random_state = 50)
    
    # Empty array for feature importances
    feature_importance_values = np.zeros(len(feature_names))
    
    # Empty array for test predictions
    test_predictions = np.zeros(test_features.shape[0])
    
    # Empty array for out of fold validation predictions
    out_of_fold = np.zeros(features.shape[0])
    
    # Lists for recording validation and training scores
    valid_scores = []
    train_scores = []

正式训练

1.获得1/n_split的数据indice和valid_indice,然后获得相应的数据
2.每次fold生成新的classifier
3.开始训练,eval填train和valid之后可以获得对应的score

# Iterate through each fold
    for train_indices, valid_indices in k_fold.split(features):
        
        # Training data for the fold
        train_features, train_labels = features[train_indices], labels[train_indices]
        # Validation data for the fold
        valid_features, valid_labels = features[valid_indices], labels[valid_indices]
        
        # Create the model
        model = lgb.LGBMClassifier(n_estimators=10000, objective = 'binary', 
                                   class_weight = 'balanced', learning_rate = 0.05, 
                                   reg_alpha = 0.1, reg_lambda = 0.1, 
                                   subsample = 0.8, n_jobs = -1, random_state = 50)
        
        # Train the model
        model.fit(train_features, train_labels, eval_metric = 'auc',
                  eval_set = [(valid_features, valid_labels), (train_features, train_labels)],
                  eval_names = ['valid', 'train'], categorical_feature = cat_indices,
                  early_stopping_rounds = 100, verbose = 200)
  1. 获取训练中best_iteration的次数
  2. 更新feature_importance---》用加权平均的方法,对于每次fold只加上所得的1/n_splits倍数值
  3. 更新test_prediction---》用加权平均的方法,对于每次fold只加上所得的1/n_splits倍数值
  4. 更新validation_prediction---》由于每次fold只有1/n_splits的数据被训练到,所以这个只要加入原数组就可以了
# Record the best iteration
        best_iteration = model.best_iteration_
        
        # Record the feature importances
        feature_importance_values += model.feature_importances_ / k_fold.n_splits
        
        # Make predictions
        test_predictions += model.predict_proba(test_features, num_iteration = best_iteration)[:, 1] / k_fold.n_splits
        
        # Record the out of fold predictions
        out_of_fold[valid_indices] = model.predict_proba(valid_features, num_iteration = best_iteration)[:, 1]
  1. 记录当前fold中最好的valid和train score---》用auc值
  2. 释放内存,加快速度
        # Record the best score
        valid_score = model.best_score_['valid']['auc']
        train_score = model.best_score_['train']['auc']
        
        valid_scores.append(valid_score)
        train_scores.append(train_score)
        
        # Clean up memory
        gc.enable()
        del model, train_features, valid_features
        gc.collect()

总结整体score

  1. 建立2个新表,用于展示feature
# Make the submission dataframe
    submission = pd.DataFrame({'SK_ID_CURR': test_ids, 'TARGET': test_predictions})
    
    # Make the feature importance dataframe
    feature_importances = pd.DataFrame({'feature': feature_names, 'importance': feature_importance_values})
  1. 获取整体validation auc---》通过上面的每回fold加入validation_prediction的数组out_of_fold
  2. 获取整体train_auc---》通过mean
    # Overall validation score
    valid_auc = roc_auc_score(labels, out_of_fold)
    
    # Add the overall scores to the metrics
    valid_scores.append(valid_auc)
    train_scores.append(np.mean(train_scores))

建立新表:每次fold中不同的train_score和valid_score

    # Needed for creating dataframe of validation scores
    fold_names = list(range(n_folds))
    fold_names.append('overall')
    
    # Dataframe of validation scores
    metrics = pd.DataFrame({'fold': fold_names,
                            'train': train_scores,
                            'valid': valid_scores}) 

标签:EDA,features,kaggle,feature,fold,train,3.5,test,valid
来源: https://www.cnblogs.com/niemand-01/p/14379362.html