P2627 [USACO11OPEN]Mowing the Lawn G
作者:互联网
转移方程很好想\(dp_{i,0/1}\)表示第i个选(1)或不选(0)
其中\(dp_{i,0}=max(dp_{i-1,0},dp_{i-1,1})\)
而\(dp_{i,1}=max(dp[j]+sum_i-sum_j),i-j<=k\)
都有\(sum_i\),那就成了\(dp_{i,1}=max(dp[j]-sum_j)+sum_i,i-j<=k\)
显然括号里的可以用单调队列优化
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
int queue[2000001];
int h,t=1;
int n,k;
int cow[2000001];
int dp[2000001][2];
int sum[2000001];
int v[2000001];
signed main(){
scanf("%lld%lld",&n,&k);
// k--;
for(int i=1;i<=n;++i){
scanf("%lld",&cow[i]);
sum[i]=sum[i-1]+cow[i];
}
for(int i=1;i<=n;++i){
while(queue[h]<i-k&&t>h){
h++;
}
dp[i][0]=max(dp[i-1][0],dp[i-1][1]);
dp[i][1]=v[queue[h]]+sum[i];
int z=dp[i][0]-sum[i];
while(z>v[queue[t-1]]&&t>h){
t--;
//v[t]=0;
}
queue[t++]=i;
v[i]=z;
}
cout<<max(dp[n][0],dp[n][1])<<endl;
return 0;
}
标签:Lawn,2000001,int,max,sum,USACO11OPEN,P2627,include,dp 来源: https://www.cnblogs.com/For-Miku/p/14356044.html