其他分享
首页 > 其他分享> > 1631. Path With Minimum Effort

1631. Path With Minimum Effort

作者:互联网

仅供自己学习

 

题目:

ou are a hiker preparing for an upcoming hike. You are given heights, a 2D array of size rows x columns, where heights[row][col] represents the height of cell (row, col). You are situated in the top-left cell, (0, 0), and you hope to travel to the bottom-right cell, (rows-1, columns-1) (i.e., 0-indexed). You can move up, down, left, or right, and you wish to find a route that requires the minimum effort.

A route's effort is the maximum absolute difference in heights between two consecutive cells of the route.

Return the minimum effort required to travel from the top-left cell to the bottom-right cell.

Example 1:

1 2 2

3 8 2

5 3 5

Input: heights = [[1,2,2],[3,8,2],[5,3,5]]
Output: 2
Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells.
This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3.

 

思路:

可以把该数据转化为图,将每个height视为一个结点,标号为i*n+j ,i 为第几行,n为总列数,j为第几列,m为总行数,然后结点之间连线权重设为两点height之差的绝对值,则可规约为求最短路径的问题。考虑用并查集和Kruskal算法进行。

并查集用于判断两节点是否联通,Kruskal是用来求MST,每一步添加没有加入进树里的最小路径进来,而这最小路径设为height之差,因为Kruskal会对权值升序排序,所以每次取得的最小路径都是不减的,所以当我们每次取最小路径的同时更新最小体力消耗的值,当左上和右下连通后,体力消耗保证最小,并且最小体力消耗值满足是整条路最大height差的定义,即是在整条路中权重最大的,也就是height差在整条路最大的。

 

代码:

class Djset {
public:
    vector<int> parent;  // 记录节点的根
    vector<int> rank;  // 记录根节点的深度(用于优化)
    Djset(int n): parent(vector<int>(n)), rank(vector<int>(n)) {
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }
    }
    
    int find(int x) {
        // 压缩方式:直接指向根节点
        if (x != parent[x]) {
            parent[x] = find(parent[x]);
        }
        return parent[x];
    }
    
    void merge(int x, int y) {
        int rootx = find(x);
        int rooty = find(y);
        if (rootx != rooty) {
            // 按秩合并
            if (rank[rootx] < rank[rooty]) {
                swap(rootx, rooty);
            }
            parent[rooty] = rootx;
            if (rank[rootx] == rank[rooty]) rank[rootx] += 1;
        }
    }

    bool isSame(int x, int y) {
        return find(x) == find(y);
    }
};
//直接调用查并集的模板


struct Edge {
    int start; // 起点
    int end;   // 终点
    int len;   // 权值
};
class Solution {
public:
    int minimumEffortPath(vector<vector<int>>& heights) {
        int m = heights.size();
        int n = heights[0].size();
        int Min= 0;

        vector<Edge> edges;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (i + 1 < m) edges.push_back({i * n + j, (i + 1) * n + j, abs(heights[i + 1][j] - heights[i][j])});
                if (j + 1 < n) edges.push_back({i * n + j, i * n + j + 1, abs(heights[i][j + 1] - heights[i][j])});
            }
        } //转化为图

        sort(edges.begin(), edges.end(), [](auto& a, auto& b){
            return a.len < b.len;
        }); //lambda函数,对图边权进行升序排序

        Djset ds(m * n);
        for (auto& a:edges) {
            Min= a.len;
            ds.merge(a.start, a.end);   //每次加进来边则设置为同一个leader
            if (ds.isSame(0, m * n - 1)) break;  //如果左上和右下leader相同即相连通,结束
        }
        return minCost;
    }
};

 

标签:1631,parent,int,rank,heights,Minimum,rootx,Effort,find
来源: https://www.cnblogs.com/Mrsdwang/p/14347111.html