防止过拟合-Dropout2d
作者:互联网
Dropout的过程 1)按照概率p,对每个输入channel进行伯努利采样,随机采样到的channel置为0,输出 2)将1)的输出结果乘以1/(1-p)就是做了dropout的结果
代码验证:
#%%
import torch
import torch.nn as nn
#%% 模型
conv1 = nn.Conv2d(2,2,kernel_size=3,stride=1,padding=0)
m = nn.Dropout2d(p=0.4)
#%% 数据准备
N = 2
C = 2
H = 4
W = 4
input = torch.arange(N*C*H*W,dtype=torch.float32).view([N,C,H,W])
'''
1)按照概率p,对每个输入channel进行伯努利采样,随机采样到的channel置为0,输出
2)将1)的输出结果乘以1/(1-p)就是做了dropout的结果
'''
#%% 预测 没有做dropout
m.eval()
conv1_out = conv1(input)
dropout_out = m(conv1_out)
# print('conv1:',conv1_out)
print('没有做dropout:',dropout_out)
#%% 训练
m.train()
conv1_out = conv1(input)
dropout_out = m(conv1_out)
# print('conv1:',conv1_out)
print('做了dropout:',dropout_out)
结果:
没有做dropout: tensor([[[[-10.0299, -10.0603], [-10.1516, -10.1820]], [[ 5.0803, 5.3178], [ 6.0304, 6.2679]]], [[[-11.0039, -11.0343], [-11.1256, -11.1560]], [[ 12.6810, 12.9185], [ 13.6311, 13.8686]]]], grad_fn=<ThnnConv2DBackward>)
做了dropout: tensor([[[[-16.7164, -16.7672], [-16.9193, -16.9701]], [[ 8.4672, 8.8631], [ 10.0507, 10.4465]]], [[[-18.3398, -18.3905], [-18.5427, -18.5934]], [[ 0.0000, 0.0000], [ 0.0000, 0.0000]]]], grad_fn=<MulBackward0>)
标签:#%%,dropout,torch,conv1,Dropout2d,防止,拟合,0.0000,out 来源: https://blog.csdn.net/xingghaoyuxitong/article/details/113133343